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A Physical Model for the Acousto-Ultrasonic Method

Michael T. Kiernan and John C. Duke, Jr.
Virginia Polytechnic Institute and State University
Department of Engineering Mechanics
Blacksburg, Virginia 24061

Introduction

The advancement of technology demands increased implementation and further development of
advanced material systems such as composite materials. Ilowever, a sound engineering approach
requires utilizing models of material behavior which can be used to predict ensuing behavior and
to avert disatrous failures due to various sources of damage like fatigue. Utilizing models to predict

future behavior for a material usually requires ascertaining information on the state of the material.

For example, fracture mechanics utilizes known material properties and measurement of crack
length and orientation to predict the behavior of a cracked isotropic material such as aluminum.
This may entail using a nondestructive testing (NDT) method, for instance radiography, to deter-
mine information on the crack. For an isotropic material, such as aluminum, this offers a plausible

method for safe use in critical structures.

However, composite materials fail by much more complicated processes which can not be ade-
quately modeled by the conventional theory of fracture mechanics. Future implementation of
composite materials for the advancement of technology requires the synergistic development of
NDT methods and models of material failure. Furthermore, it requires the unification of NDT
with modecls of material failure to develop the ability to predict future material life and behavior

based on NDT results, which is known as nondestructive evaluation (NDE).



b

Rescarchers are currently working to develop models that predict the strength of a material and its
degradation due to fatigue.  The following chapter will say more concerning futigue models. In
general, fatigue models require an input parameter or parameters which describe the present state

of the material.

A number of NDT methods have been developed to help determine the material state, cach with
various advantages and disadvantages. Reviews and comments on most ND'T methods may be
found in references 21 and 26, Some NDT methods are more casily related to the mechanical state
of the material, while some offer the advantage of being simpler and quicker to inplement for

practical application.

The fundamental aspects of the AU method entail introducing a mechanical excitation at one point
on a material surface and sensing the resulting disturbance at another spot on the material surface.
A general diagram (fig. 1) displays the basicidea of the method and the versatility of its imple-
mentation.

Much work has been directed at determining the best methods for creating the mechanical dis-
turbance and how best to sense-it (refs. 34, 87, 152, 155. 1539, 160, and 161). Also, work has been
dirccted at how to best analyze the signal produced by the sensing instrument (refs. 7, 49 ,8, 10, 99,
147, and 63) and some work to understand the physics of the wave propagation (refs. 54 and 97).
However, no theory to date fully explains the nature of wave propagation in composite plates as-

sociated with the AU method.

‘The original implementation of the AU method involved using a piczoelectric transducer 1o simu-
late acoustic cmissions and another ultrasonic piczoclectric transducer to monitor the resulting
disturbance at another location. Initial analysis of the received electrical signal involved counting
voltage excursions above a threshold voltage to gain an indication of the encrgy in the signal. The
number of counts above the threshold voltage was multiplied by pulse rate and the sample interval
to yicld a value termed the Stress Wave Factor (SWI). 1f the electronics and the orientation of

transducers are the same for two different sections of material, it was postulated that the region of
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material with the highest SWF value would be the strongest. The primary assumption is that a
material that most efficiently transfers energy via stress wave propagation will better transfer service
loading and hence be less prone to fracture. This was used by Vary and coworkers (ref. 36) to
predict strength of small composite bend specimens.  Also, this method was used to monitor pro-
gressive fatigue damage in composite specimens.  [lence, carly work on the AU method showed
that the AU measurcment (SWF) correlated to the material condition of the specimen and cnsuing

behavior, thus fulfilling one basic demand of an NDT method.

Additionally, the method shows other practical advantages. First, the direction of wave propa-
gation is in the plane of the plate, which is often the planc of primary loading. Thus, the AU
method offers the advantage of characterizing the material in the dircction of loading. Secondly,

the AU method offers the practical advantage that access to only one side is nccessary.

A number of problems exist with application of the AU method and these are in fact defining the
path of research on the AU method. First, the present experimental technique is tedious and rather
difficult to reproduce. Methods of overcoming these problems involve using advances, such as laser
technology, for creating disturbances and measuring disturbances. Secondly, the method has, prior
10 this work, had no sound theoretical basis for composite materials, so that connections could be

made to other physical models of material behavior.

The purpose of this dissertation is to develop an understanding of the mechanics of the acousto-
ultrasonic (AU) method and hence to pave the way for relating AU parameters to input parameters
for fatigue models. In otherwords, mechanics is the common ground by which both NDT methods
and fatigue models may be understood and eventually related to develop an NDE method. Using
this philosophy, it is the goal of this dissertation to both forward an undcrstanding of the mechanics

of the AU method and to begin merging it with fatigue models.

The second chapter covers the unifying concepts of mechanics of composite materials, ultrasonic

wave propagation theory, and experimental ultrasonics to help provide a basis for building an AU



model for use with predictive models.  T.amb wave theory and through-thickness-transverse-
resonance (TTTR), both used in later chapters, are covered in this chapter.  Also, a more com-
prehensive review of AU rescarch is covered in this chapter, with emphasis on theory and results
utilized in this disscrtation.  This chapter also serves to motivate the direction taken in subscquent

chapters.

The third chapter details the experimental set-up and procedure. This is very important in order
to understand the limitations of this work and to best implement these results.  Moreover, this
chapter includes general statements concerned with practical application of the AU method. An
understanding of the experimental sct-up combined with the physical interpretation of results may

also lead to improved experimental set-ups.

The fourth chapter provides results obtained using the experimental procedure described in the
prior chapter, including both qualitative and quantitative descriptions of the signals used to under-
stand the wave propagation. These results along with results from the literature scarch provide a
basis for a physical understanding of the AU method. Additionally, results are given which are not
totally understood at present, but will hopefully guide the way to further rescarch and improved

modeling.

The fifth chapter details a physical understanding of the AU method that has been obtained by
comparing experimental results presented in the fourth chapter to the theory discussed in the second
chapter. This involves using elasticity solutions, Lamb wave theory, and through thickness trans-
verse resonance. Qualitative trends are noted and quantitative comparisons are made between cx-
perimental results and computer results from programming TTTR and Lamb wave cquations.
Specifically, results seen in the AU signal are identified as higher order Lamb waves. Discussion
is also dirccted toward explaining the mechanism by which the transducer excites the Lamb waves

scen in AU experiments.
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‘I'he sixth chapter uses the physical understanding of the AU method, forwarded in the fifth chapter,
to construct a model of the AU method. This model includes the use of computer codes which
compute through the thickness transverse resonance frequencics and dispersion information on
guided waves in composite materials. A large body of discussion is dirccted at how to model the
mechanics between the input and the resulting Lamb waves. Additional comments are made on
how the model may be improved and built upon for future use. This chapter also discusscs how

the AU model could be combined with fatiguc models to yield NDE information.

The seventh and final chapter forwards an overview of the dissertation topic. Discussion here in-

corporates ideas for future research and practical considerations of applying the AU method.

In general, this dissertation develops a physical understanding of the AU method from experimental
results, wave propagation theory, and understanding of composite materials. Additionally, an ap-
proach for modeling AU results is developed based on the physical understanding of the AU
method. The major contribution of this work is the physical interpretation of experimental results

and the application of this toward developing an NDE method.



Literature Review

The litcrature review starts with a basic coverage of composite materials and composite material
damage modcls. This review is by no means comprehensive, but introduces notation and ideas for
understanding following comments. Next, basic concepts of wave propagation arc presented, in-
cluding the behavior of planc waves in various media and the concept and analysis of a waveguide,
Specifically, the use of Rayleigh/Lamb wave analysis to predict plate wave behavior and the phe-
nomenon of through-thickness-transverse-resonance (TTTR) are the focal points of the discussion
on waveguide theory. Basic wave propagation and wave guide theory can be used to develop
models of the last two subjects to be covered in the litcrature review, these being analytical ultra-
sonics and the AU method. The literature review of the AU technique will show the need for AU

modcls in composite materials and hence promote the usefulnesss of the dissertation topic.

Composite Materials

A great deal of work and rescarch has been devoted to understanding composite matcrial behavior.

References 43-48,119,123,114,109 give a good gencral overview of some of the basic results of this
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work. One major division in understanding the mechanics of composite materials is that of
micromechanics and macromechanics. Micromechanics is concerned with understanding the be-
havior and interaction of the constituent materials in the composite. Obviously, this is of great
importance in truly understanding the mechanics associated with composite material behavior.
Generally, macrornechanics models global mechanical behavior by treating cach lamina as an
anisotropic homogencous material. A couple of pertinent comments will be made on both
macromechanics and micromechanics. The discussion below starts by introducing the notation and
coordinate systemy which is used throughout the paper.  Next, a brief discussion is given on
macromechanics and then micromechanics. Then, several points arc made concerning the field of
damage mechanics, which involves understanding both micromechanics and macromechanics.
Lastly, a brief coverage of the critical element model is given, along with some comments on fatigue

modecling of composites in general.

Basic Notation and Coordinate System

Figure 2 shows the basic coordinate system which will be used in the rest of the dissertation. Notice
that & is half the platc thickness. Also, notice that the origin is located on the horizontal middle

planc of the plate.

Tigure 3 shows the definition of azimuthal angle which will be used throughout the remainder of
the paper. Also, the relative direction of the fibers in a given lamina with respect to a chosen zero
degree fiber dircction will follow the same convention (i.e., positive for counter clockwise rotation).
Ience, a laminate is described by writing ply fiber orientations with respect to the zero degree di-
rection between brackets and separated by slashes, in the order they occur starting with the top ply
and ending with the bottom ply. Also, a subscript s following a bracketed configuration means the
laminate is composed of a top half of laminac described by what is in the brackets and a bottom

half which is the mirror image. For example, [0, 90], is pictured in figure 4.
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The standard notation will be used for the general 3-d lincar clastic stress-strain relations.

This involves using both the compliance matrix and the stiffness matrix dcfined below:

O’i = qjﬁj
£ = SUU./

The reduced tensor notation utilizes the following reductions:
1{---1, 22---2, 33---3, 23---4, 13---5, 12---6

where o, and ¢, arc the stress and strain tensors, respectively. The rotation of stress and strain

tensors to new coordinate systems is performed using concepts of tensor analysis. However, at-

“tention should be given to which definition of shear strain is used and correcting factors should be

included. These concepts can be used to derive the cquation for the rotation of the stiffness matrix,

given in unreduced tensor notation:

('ijkI = aimajnakoa{p('mnnp

The a,, type terms are the direction cosines between the coordinate axes. llence, C,;, shows how
reorienting an anisotropic material, such as a fiber reinforeed lamina, modifies the moduli relative
to a given dircction. Note that in the unrcduced notation the subscripts only take values up to 3
and that certain mixed terms are hall the value of the same term in the reduced notation (ref. 105).
Thus, the value for the moduli of a fiber reinforeed ply with fibers oriented in any direction can be
casily obtained by transforming the stiffness matrix values for a coordinate system with one coor-
dinate axis in the fiber direction and another perpendicular to the plane. The coordinate system
aligned with the fiber and transverse fiber direction contains less terms in the stiffness matrix duc
1o inherent symmetrics. This transformation will prove important for the equations describing how
wave propagation varies relative to fiber direction for composite materials. These transformed
values for various layers can be averaged together in a laminate analysis scheme. A good coverage

of the relationships between engincering propertics and terms in the stiflness and compliance ma-

10
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trices can be found in Jones’ book (ref. 123).  Also, the matrix Q, is used to represent the reduced
plane stress matrix (ref.123). Finally, the following notation is utilized for engineering propertics:

Poisson’s ratio

Vij = Sj/Cz'

for

g, =0

and coefficients of mutual influence

iy = Eilvy

for

and

Mya = vyle

for

UU——'G

The other engineering constants are fairly self-explanatory and standard (see ref. 123).

A, B and D matrices are calculated by the following equations

X

Ay = @y)k(zk = Z,_)
k=1

13
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n
k=1

Dy= 1/3Z(§zj)k(213 —zy)
k=1

where n is the number of plics and QI are the values of the reduced stiffness matrix. These matrices
can then be used to calculate displacements and curvatures due to in-plane loads and moments.
This is an example of averaging layers to get laminate response. Ior unsymimetric laminates the

B matrix is nonzero and in-plane loading can result in curvature.

Macromechanics

A good basic coverage of macromechanics can be found in references 123 and 124. Macrome-
chanics uses ply level properties, assuming homogeneity, to determine {aminate behavior. This in-
cludes analytically predicting how the laminate will deform under loading and predicting ply level
failure. Laminate analysis can be used to predict deformations and ply level stresses by calculating
the A, B, and D matrices. This type of analysis, encompasses assumming plane stress or that the
material is sufficiently thin to ignore out of plane effects. A good coverage of laminate analysis can
be found in reference 124. Tailure theories can use the information on stresses and strains in various
lamina to predict ply-level failures. Theories include the Maximum stress and Tensor Polynomial

criteria. These theories and others can be found in Jones” book (ref. 123).

A variety of interesting phenomena occur due to the variation of material properties with azimuthal
angle, caused by the fibers. First, even for a single ply this causes a coupling between shear and

tension for directions other than in the fiber dircction or transverse to the fiber. This type of be-

14



havior is quantified by the coefficient of mutual influence defined above. For instance, #,,, indicates
the amount of shear deformation which will result due to a tensile or compressive force. These type
of basic mechanical properties should be kept in mind when trying to understand wave propagation

phenomena in composite materals.

Differences in the mechanical behavior of various plies leads to interlaminar stresses at edge
boundaries and can lead to delamination between plies. Herakovich has reported on the relations

between engineering properties of neighboring plies and the propensity for delamination (ref. 119).

In general, Macromechanics considers the effects of fiber and matrix interaction to be smeared to-
gether, so that a ply may be treated as a homogeneous anisotropic material. Laminatc analysis and
plate theory can then be used to predict how the laminate will deform under load. This information
can then be used in failure theories to predict when various plies will fail. Also, laminate analysis
can be used to gain information on when a laminate may delaminate. Lastly, approximations for
ply level effects of damage can be used with laminate analysis to show the effects of damage on the
mechanical behavior of a composite material, as predicted by a macromechanical approach. For
instance, laminates with cracked plies can be analyzed with the value of the modulus for the cracked
plies lowered or reduced to zero. Determining exactly how damage, such as cracks, changes the

moduli of composite materials is the domain of micromechanics.

Micromechanics

The area of micromechanics concerns trying to determine how stress and strain interaction will take
place between the fiber and matrix materials. Also, micromechanics is concerned with the effects
of damage on the distribution of stress and strain in specific areas such as in the fiber and matrix.
This can then be used to predict failure or changes in stiffness. Furthermore, this type of approach

is essential for understanding damage mechanics and the progression of damage leading to failure

15



in compositc materials. Analysis of this type is used in failurc models such as the Critical Element
(ref. 43). Although present research on the AU method is not overly concerned with a microme-
chanics type of approach, various observed phenomena may ultimately be cxplained by using a
micromechanics approach. This may especially be true when trying to cxplain the effects of damage
on stilfness and damping. For instance, Nuismer’s approach (ref. 111) may be used to predict
stiffness reduction in a cracked ply. This effect may then be used with laminate analysis to predict
reduction in stiffness. This may then be used with wave theory to predict changes in AU. Basically,
micromechanical analysis involves defining a representative volume and sctting up a boundary value
problem based on this volume. This may include considering internal boundaries between fiber and
matrix within the representative volume. Then mechanical properties of separate materials are used

with governing equations to detcrmine overall volume behavior.

Damage Mechanics

References 109, 111, and 114 survey the area of damage mechanics and document a varicty of ob-
scrvations. In general, these observations concemn damage duc to fatigue, but references 70, 100,

116 and 117 concern damage incurred due to impact.

The first mode of damage encountered during unidirectional cyclic tensile loading is matrix cracking
in plies with fibers oriented away from the loading direction. These cracks usually run between fi-
bers in a direction parrallel to the fibers. Cracks usually appear first in plies with fibers oriented
furtherest from the loading direction (i.e., in many cases 90 degrees). Also, the spacing of cracks
can be predicted based on a shear lag model (ref. 109). The cracks reduce the stiffness of the lam-
inate. Various modcls exist for predicting this reduced stiffness, some involving continuum based

solutions.

16



Next, high stress rcgions associated with cracks near the ply interface cause fibers to break in
neighboring plies. It has been reported that two-thirds of the total number of fiber breaks occur

in the first one-third of the fatigue life (ref. 109).

Also, microcracks begin to form at primary crack tips located at ply interfaces. A large number of
these cracks usually exist and they do not extend far from the primary cracks. Plunkett (ref. 125)
has reported that these small microcracks cause an increase in the damping of the material. Hence,
the microcracks may cause energy to be dissipated in these regions, leading to increased localization
of damage in these arcas. The damping effects of these microcracks may explain the fact that AU
values decreased more at this stage than stiffness values. Many other factors, such as load rate (ref.
148), stress concentrators, and tension versus compression affect fatigue behavior and modes of
failure. Understanding these effects is still a goal of research. Hopefully, an increased under-
standing of the mechanics controlling these effects can be combined with an increased understand-
ing of the AU method. For instance, maybe damping of AU waves may be extrapolated
analytically to predict what is going on mechanically at various loading rates and then related to

damage modes.

Finally, areas of localized damage may grow, leading to delamination and local failure. The growth
of delaminations has been treated analytically by O'Brien (ref. 114). Also, the mechanical effects
of the delamination and matrix cracks may be calculated using micromechanics and put into
macromechanics models to predict laminate properties for damaged materials (ref. 111). As men-
tioned, damage, such as matrix cracking, causes changes the example in material propertics, for in-
stance material stiffness. Hence, the material will behave differently on a global sense and also tend
to distribute stress differently as a result of damage. The final effect of the damaged region may be
to concentrate stress in plies with fibers in the dircction of loading. - This concentrated stress,
whether caused by fatigue or applied stress, may, if large enough, eventually lead to laminate failure.
Predicting the growth of this region and eventual composite failure is the goal of modeling efforts
such as the critical element model. NDT methods attempt to assess the state of the damage process.

A full NDE method for composite materials involves using damage models with the NDT methods

17



I

Lan

to predict the service life and future behavior of a composite material, This involves understanding
the process by which matcerial any regard properties change duc to damage and how these changes
proliferate and cause more damage.  Hence, an increased understanding of damage mechanics
provides information for constructing fatigue models, understanding NDT results, and hopelully for

relating fatigue models to NID'T methods.

Models

A number of approaches have been used to model the fatigue of composite materials.  Most of
these approaches are phenomenological. One early model consisted of a linear equation for residual
strength as a function of fatigue cycles (ref. 44). More recent approaches are being developed which

are more mechanistic and can be applied to variable blocks of loading (ref. 43 and 108).

First, Poursartip and Beaumont (ref. 108) have developed a simple model which involves integrat-
ing a differential equation for damage to give fatigue life. For example stiffncss can be used as a
damage parametet, since it decreases with damage. As pointed out in the reference, this parameter
may be replaced by any other representative indicator of damage. In example, the AU value ob-
tained in the direction of loading would perhaps serve as a good indicator of damage. In fact, the
study comparing the SWI' value to fatigue cycles showed the AU measurement to change more
than stiffness (ref. 6). This may be duc to the fact that the AU measurement is sensitive to both
stiffness reduction and various sources of wave motion attenuation, This miethod only deals slightly
with the mechanics of the matter, but has the advantage of simplicity. However, as with any cur-

rent method some experimental data is necessary.

A more mechanistically based approach is the critical clement model proposed by Reifsnider and
coworkers (ref. 43). ‘The major aspect of this method is that a critical clement which controls the

strength of the laminate is defined. In many applications this is the laminac with fibers in the di-

18



rection of load. Tlence, the phenomenological characterization of the cyclic strength degradation
of the critical clement is essential {or application of this model. "This method accounts for various
mechanical effects of damage which occur. This involves the redistribution of stress due to matrix
cracks. Additionally, this approach accounts for the 3-dimensionality of the stress state and strength
by introducing a failure theory type term (F7(n)) for the applicd stress over ultimate strength term
in the residual strength equation.  In any regard, this method uses information on the mechanics
of the damage process to allow the prediction of fatigue for a given laminate based on knowledge

of a single ply.

The purpose of pursuing these models is to help relate the mechanics of these models to the me-
chanics of the AU modcl. Presently, these models trace fatigue state by changes in stiffness, which
most certainly affects AU results. Also, the directional dependence of the effect of damage shows
up in the results of the AU method and is also of interest in applying the critical clement.  Addi-
tionally, the stress waves may interact with dumage through scattering and damping mechanisms
and be sensitive to more subtle mechanical effects of damage which arc not evident in stiffness
measurciments.  However, the relationship between these effeets and fatigue behavior is probably
beyond the present mechanical understanding of fatigue.  As stated, the purpose of an NDI method
is to help predict the mechanical behavior and life of an engineering component.  The best way to
do this is to find pertinent parameters to use in damage modcls. Ience, this coverage of damage
modcls serves to show how the mechanics of the damage modcels and the proposed AU model arc
related, in hopes of finding how AU parameters may be combined with damage models to deter-

minc the engincering response and remaining life of a structure.
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Wave Propagation

Wave propagation is concerned with how time and position dependent displacements change
throughout a material. The conventional theory of wave propagation can be broken into the two
basic categories of bounded and unbounded media. However, the theory of wave propagation in
bounded media involves using much of the theory from wave propagation in unbounded media.
In this scction, a short revicw of the basics of unbounded wave propagtion is given and then a
somewhat more comprchensive coverage of the Rayleigh/Lamb wave problem and TTTR is pre-

sented.

Unbounded Media

The equations for wave propagation in an unbounded continuous media arc derived by applying
Newton’s sccond law to a rectangular parallelepiped (Ref. 24). This leads to the following

continuum equation for motion:
pY; = olj‘]

wherc o, is the gradicnt of the stress tensor, p is the density of the material, and « is the particle

i

acceleration.

Linear Elastic Homogeneous Isostropic (LEHI) Materials

For a LEHI material this cquation shows two types of bulk plane waves, dilatational (P-wave) and
distortional (S-waves), which can be propagated through the material. The (P-wave) has displace-

inents in the direction of propagation and the (S-wave) has displacements perpendicular to the di-
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rection of wave propagation. In general, this leads to 3 modes of wave propagation in a given
direction, if the full 3-d cigenvalue problem is solved: one (PP-wave) with displacements in the di-
rection of propagation and two (S-waves) with displacements that are mutually perpendicular to the
direction of wave propagation. The following phase velocitics are casily derived for cach of the

modes of wave propagation:

(P —wave) v,= (E/p)'5
(S — wave) v, =(Glp)’

where £ and G are the tensile and shear modulus, respectively. These velocitics are derived by as-

suming a harmonic plane wave is propagating through the material.

A description of the reflection and refraction of these waves at an interface is relatively straightfor-
ward and is covered in refercnces 3 and 24. A simple case of this situation is that of a plane wave
striking the surface of an infinite half space. The basic solution to these problems can be visualized
by using “slowness surfaces” to view the reflection problem. This approach can be derived by using
Snell’s law (which says that the ratio of the sinc of the angle of incidence over the velocity of the
wave must be equal to the ratio of the sine of the angle of reflection over the velocity of the reflected

wave) and by considering stress free boundary conditions.

The solution of the infinite half space problem shows that a reflected P-wave and a reflected S-wave
are causcd by an incident P-wave, where the S-wave is at a lesser angle to the vertical. An incident
S-wave (where the shear motion is in the plane of motion) causes a reflected P-wave and S-wave,
if the angle of incidence is less than the critical angle. The critical angle may be calculated by Snell’s
law. When the angle of incidence is greater than the critical angle, a Rayleigh surface wave and an
S-wave are created. A Rayleigh wave travels parallel to a surface, causing an oval motion of par-
ticles. The disturbance decays in amplitude with distance from the top surface and no energy is
transmitted from the surface into the half space of material below. Reference 142 considers the

problem at the critical angle. Equilibrium conditions can then be used to determine relative values
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of reflected waves. FPigure 5§ shows the dependence of reflected wave amplitude over incident wave
amplitude (4g) on angle of incidence, for the reflected shear wave (A4,) and the reflected P-wave (
A). ‘This type of behavior is related to mode coupling, which will be discussed later in regard to

its effect on AU results.

Dispersion

For various reasons, the wave number & may depend on the frequency o in a nonlincar manncr.
Ilence, the phase velocity v = w/k depends on frequency. This leads to a number of interesting
phenomena.  Plots of wave number versus frequency (dispersion curves) present this information
in graphical form. If a curve is nondispersive, the curve is a straight line, where the slope of the line
is the phasc velocity. If the curve is nonlincar (dispersive), the phase velocity is the slope of a line

from the origin to the point on the curve.

First, the scparate harmonic components tend to separate in the wave train. Ilence, various har-
monic components tend to separate out, especially in cases where the component frequencies pos-

sess different phase velocities and group velocities.

The concepts of beat frequency and group velocity also help to explain dispersive wave motion.

These concepts relate to each other and help to explain phenomena scen in the AU technique.

The concept of beat frequency is often utilized in vibration and wave motion analysis to defermine
the effect of two frequencics scparated by a small frequency difference. Basically, the two harmonic
wave components with wave number k, and &, and frequency w, and w,, respectively, may be
superimposed and trignometrically manipulated to produce the following equation:

k2+kl (.02+CU1 kl—kl Wy — Wy

u = 2acos( STX 3 t) cos( 7 X~ 3 0
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Figure 5. Reflected wave amplitudes for incident P-wave [ref. 147]
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The first term represents the average of the motion characteristics of the two scpatate components
and is close to the original motion, if the two values arc comparable. The sccond term propagates

more slowly and is a modulation or beat term.

Group velocity is used to describe the energy speed - the speed at which the modulating pulse
travels. ‘This describes the speed at which the pulse travels and can also be shown to be the speed

of energy propagation. Tor the case of two frequencies this valuc is simply given by
v

or. = (@3 — 0)](ky = Ky)

However, if a number of frequencies are present the group velocity or pulse velocity is given by the

equation
_ do
Yer = dk

Graphically, the group velocity for a certain wave motion is the instantaneous slope of the

dispersion curve.

These concepts have been united into a concept for analyzing a wave packet by utilizing a Gaussian
exponential function (ref. 139). This theory gives the same values for phase and group velocitics
and predicts the extent of pulse spread. Adaptation of this type of theory may help to improve

modelling of the AU method.

Dispersion is caused by a number of sources in materials. Authors have cited a number of these

for composites:

Layering (ref. 32, 51, 69, and 106)

Different phascs-fiber/matrix (ref. 51, 69, and 107)

Wave guide effects (ref. 12 and 13)
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Inclusions and damage (ref. 66, 69, and 81)

IHence, a good deal of both experimental and theoretical work has been conducted to understand

wave dispersion in composite materials.

Comuments will be made later on how the dispersion caused by a wave guide may produce some
of the above mentioned phenomena. This may help 1o shed light on signatures occurring with the

AU technique.

Diffraction and Interference Effects

The fact that any real wave is generated from a source of finite size, that does not generate a plane
wave with perfect phase, spawned the need for less idealized treatments of wave propagation. Much
of the theory associated with these ideas is borrowed from optical theory, where obscrvation of
these effects are most obvious (e.g., Young's slit experiment). Basically, this theory is concerncd
with the manner in which waves of different phase interact with each other, in either a constructive
or destructive manner. In the case of a finite source problem, this can be broken-up into two re-

gimes- Fraunhafer and Iresnel.

Fraunhafer- region far away from the source, where plane waves considered to start at each
separate point on the source have recombined to form a diffraction arc of constant phase (ie.,

a plane type wave)
Fresnel- region close to the source requires a Huygens wavelet approach

Reference 139 presents a good overview of this theory as applied to slits with plane light incident.
An area of interesting work may be to develop this type of work as it applies to the AU method.

However, the situation is very complicated, because the effects of the reflected waves off the top
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and bottom plate boundarics leads 1o a complicated system of different path lengths and hence

phase differences.

Linear Elastic Ilomogencons Anisotropic (LEHA) Materiuals

For anisotropic materials, the cigenvalue problem becomes somewhat more complicated and in
)
general 3 separate modes of wave propagation exist.  Also, the properties of these modes are de-

pendent on the direction in which the waves arc traveling.

Starting with the basic constitutive law for an anisotropic matcrial and assuming infinitesimal strain,

the equation of motion can be cxpressed as
Cyutyar = PY

where C,, is the stiflness matrix, u,, is the gradient of the strain tensor, i is the acceleration and

p is the material density. An assumed plane wave solution can be cxpressed as
X —0I)

u, = Akel(‘.

where ¢ is time, #, is the displacement vector, v, is the wave vector, x,, is the position vector, and

w is the angular frequency. The phase velocity can be dcfined as
v=o/|v]

where

lvl= 01+ 4937

Hence, these cquations can be combined to arrive at the basic eigenvalue problem for a wave

propagating in an infinite anisotropic lincar material

26



Ay — pv28) =0
where

Ak = Cyrvjvy

Ak = Aak
and
dkdk = l

The determinant of the three by three matrix in the parentheses can be solved to obtain three values
of phase velocity for an assigned dircction ¢/| ¢|. For each phase velocity the displacement am-
plitudes can be determined to within an arbitrary constant. A program has been written to solve
this equation for any direction in a composite plate and is listed in appendix G. These results help
to understand the nature of wave propagation in composite materials and to derive dispersion
curves for plate waves in composite materials. Also, a form of this equation is used later to deter-

mine phase velocitics in the thickness direction, and in turn to predict the TTTR frequencies.

For anisotropic materials, such as composites, the variation of mechanical propertics with
azimuthal angle causes coupling between shear stresses and normal displacements and between
normal stresscs and shear displacements (ie. coefficients of mutual influence). For example, a wave
launched in a general direction, with predominately normal displacement, will excite shear forces,
thus force and displacement vectors are not aligned, leading to the energy flux deviation. Specif-
ically, the encrgy flux deviation is the redircction of the energy in a stress wave from the direction
it is launched. In the example the energy vector is obtained through the matrix multiplication of
the stress matrix and velocity vector. For cases where there is coupling between shear and normal
motions, the shear stress, caused by the imposed predominately normal (motion found by solving

the Christoffel equation) motion, matrix multiplies the velocity vector (oriented in the direction of
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propagation) and the shear stress acts to redirect the energy flux. For certain directions in
anisotropic materials and for all directions in isotropic materials, there is no coupling between shear
and normal motions/stresses (e.g. coefficients of mutual influence are zero). In these cases, the
energy flux is in the direction of the motion, because no stresses arise that are not oriented with
displacements. Hence, the unit vector normal to the plane of constant phase is not always aligned

with the flow of energy. In particular, the energy flux vector can be expressed mathematically as:
E;= — oty = — Cypqtiy 4,
where the dot over the ¥ denotes a time derivative.

The problem of a wave impinging on a stress free interface is greatly complicated by a number of
effects associated with energy flux and the fact that 3 separate pseudo-waves (motions are not purely
normal or shear) make up the wave motion. A number of authors have pursued this problem (refs.

22).

The first complication is that the critical angle (angle above which an incident shear wave can not
excite a reflected normal wave) is dependent on the energy flux vector and not on the slowness

surface (ref. 40).

The next complication is the existence of 3 non-circular slowness surfaces. This can lead to a va-
riety of complications. For instance, for a stress free boundary this means any incident wave will
cause 3 reflected waves with displacement vectors oriented with various components in and out of
the plane assoéiated with the wave vector. Additionally, as pointed out by Henneke (ref. 22), a
wave impinging on the interface between two separate anisotropic materials may result in more than

3 waves being refracted, depending on the angular variation of material properties.

These types of problems create great difficulties in applying various wave tracing techniques and

other similar approaches to understanding the AU method.
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Other Constitutive Relations

Although the model which is forwarded in this work does not include the effects of other more
complex constitutive relations, thesc cffects are mentioned for the purposes of explaining cffects

seen experimentally and to promote further work.

First, any rcal material has mechanisms for dissipating encrgy or attcnuating wave propagation.
These include scattering, absorption, reflections, viscoelastic effects, and various other dissipative
effects. As mentioned in Kolsky (ref. 24), understanding mechanisms for dissipating stress wave
energy may lead to increased understanding of damage mechanisms occurring in materials. Devel-
opments in understanding this type of behavior also leads to more sophisticated ultrasonic methods.
Christensen (ref. 126) gives a good trcatment of stress wave propagation in a viscoelastic medium,
with some notes on how this may be used to determine viscoelastic constitutive values. Kolsky (ref.
24) gives a good overview of sources of internal friction, their models and associated experimental
work. Also, a number of authors have modelled scattering duc to inhomogeneities that occur in
composites and result due to imperfections (refs. 93, 94, 115, 81, and 66). Combining modecls that
account for material inhomogencities with AU models will allow for more detailed information to

be obtained from the AU method.

Plastic and shock waves can occur in instances where high amplitude excitations (such as explosive
type charges occur). Plastic waves occur much more often than shock waves in solid materials.
However, refercnce 104 gives the theoretical formulation of shock wave propagation in composite

materials.

Plastic waves occur when the amplitude of a stress excitation is above the proportional limit. The
mathematical formulation for plastic waves can be found in reference 24. The wave speed of a
plastic wave is less than that of an elastic wave, but the amplitude would be greater. Hence high

impact excitations would producce a small amplitude elastic wave which would preceed a high am-
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plitude plastic wave. One area of rescarch might involve relating elastic wave propagation to plastic
wave propagation, so that elastic wave propagation might be uscd to predict plastic wave propa-

gation and damage.

The propagation of stress waves in inhomogeneous matter is of both practical and theoretical in-
terest. In general, the propagation of stress waves in inhomogencous material can lead to scatter
(ref. 69), dispersion (ref. 51), and various waveguide effects such as Love and Stonely waves. Many
of these phenomena depend on the relative dimensions of the inhomogencity compared to the

wavelength of the stress wave. This is an active area of both experimental and theoretical research.

Plate Wave Equations

Two basic approaches can be used to derive the equations for plate waves. The first is the more
conventional Rayleigh/Lamb wave analysis. The other more recent approach is the method of

partial waves or transverse resonance (ref. 127).

The Rayleigh/Lamb wave approach involves expressing the displacement vector u as a scalar and
vector potential and then solving for the potentials in the equations of motion by the scparation
of variables method. Next, the potentials are combined in a proper manner to satisfy the boundary

conditions (stress free) at the top and bottom surfaces of the plate.

In the partial wave method, exponential-type waves are reflected back and forth between the top
and bottom strfaces of the plate. This leads to traveling waves in the direction of wave propagation
and standing waves in the thickness direction of the plate. These waves are found by establishing
the condition for transverse resonance through the thickness of the plate. For anisotropic materials,
the method of partial waves leads to a solution much easier than the more classical approach. Also,
as pointed out by Solie and Auld (ref. 127), this method highlights certain physical features of the

nature of plate wave propagation.
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Isotropic Plate Waves

As is the case with many areas in science, the origin of the plate problem was experimental obser-
vation. Specifically, the nodal patterns for a vibrating plate were noted in 1787. In 1815, Germain
derived the equations for an isotropic plate vibrating with a bending motion. Additional contrib-
utions were made to this problem by a number of famous scholars, inctuding: Lagrange, Legendre,
I'ourier, Poisson, Cauchy, and Euler (ref. 11). Lagrange’s work expanded on that of Germain,
leading to the Germain-Lagrange equation. This equation assumes a thin plate vibrating in a
flexural motion to arrive at the equation
62u3

DViViu, + 2pb " =0

where,

2 2
et

and
D =4ub’j3(1 - v)

and b, u, v and p are half the plate thickness, Lame’s shear modulus, Poisson’s ratio and the mass
density, respectively. In 1850, Kirchoff published a paper in which he employed a variational
method to derive the plate bending vibration equations, including a derivation of the proper
boundary conditions and a comparison to original experimental results. It is this basic approach

that Mindlin later utilized to obtain his higher order approximation method.

Although enjoying much less attention, it was at about this same time that Poisson derived the
equations governing the motion for extensional waves in a thin plate. These equations are known

simply as the Poisson extensional equations
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where,

where 1 is Lame’s constant. The Germain-Lagrange equation and Poissons” extensional equations
are only valid if the wavelength of the vibration is greater than the plate thickness and the waves
are low frequency. Moreover, the solutions assume that there is no variation of displacement in the

x, direction or what is the thickness coordinate.

In 1888, Rayleigh utilized the theory of lincar elasticity to derive the equations for the general plate

problem in an isotropic material, using the equation of motion stated above.

The equation of motion can be decoupled, revealing two independent modes of wave propagation
by using the Poisson-Lame decomposition formula. Thus, a purely extensional wave (P-wave)

with velocity given as

2 _ /7+2,u
Vp———'—p

is found to propagate with irrotational motion. Additionally, shear waves (S-waves) are found to

propagate with velocity
2_ K
Vi =5

as ecquivoluminal waves. 1 and u are Lame’s constants.
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Hence, combining these basic equations derived from elasticity with the imposition of traction free

boundaries at the top and bottom surfaces

73 =0
at

Rayleigh set the stage for solving the problem for plates of arbitrary thickness. The solution to this
problem, much of which was performed by Lamb (ref. 58), lead to a number of interesting results,
including the prediction of an infinite number of higher order modes. Moreover, he showed that
the fundamental mode solution converged to the elementary theory as the plate thickness was re-
duced 1o zero thickness and to Rayleigh surface waves in a half space as the wavelength converges

to zero. Note, the boundary conditions are automatically satisfied in the elementary theory.

By introducing two horizontally polarized shear waves (SH-waves) along the x, which are reflected
off the top and bottom surfaces, a plate wave is set-up to have displacement only in the x, direction.

Specifically, this involves introducing the waves defined by
wy =Ly exp i(éx) + fx3 — wt) + E, exp i(éx; — fx; — wi)
where

@ =& + 7

where ¥ and u, are equal to zero. Moreover, the angles of incidence and- reflection are given by the

equation

03 =tan”

1 £
B



Notice, the angle of the input wave defines the ratio of the wave numbers. Now, the basic form
of the solution can be found to be a harmonic wave traveling in the x, direction, with x, displace-

ment which varies sinusoidally through the thickness, where the frequency of the wave is given by
2_ 2,2 nmw (2
of =i+ (5]

Ience, the solution is dispersive (nonlinear relationship between frequency and wave number in the
propagation direction) for all orders higher than the zero mode. The wavelength of each of these
solutions is given by 27/¢ and the phase velocity by v=w/é. The lowest frequency is given by
@ = v,1/2b, which is considerably lower than the corresponding lowest frequency for flexural vi-
brations. Basically, the input horizontally polarized shear waves (SII-waves) can be shown to dic-
tate the plate waves. It should also be noticed that an earlier elementary solution did not exist for

the SH waves.

Next, Lamb continued using Rayleigh's basic solution to derive the basic Raylcigh-Lamb waves,
which are produced by the introduction of a pressure wave (P-wave) and a vertically polarized shear
wave (SV-wave) to the plate. These can be expressed by the scalar potential for the pressure wave
and the one vector potential for the SV-wave. Specifically, if consideration is given only to the

propagation in the x, direction, then
@ = @q exp i(Ex) L ax; - wl)

w = v;(oz2 + &)

Hy = Hyexp i(éx) & ax; — wi)

w =V (B + &)

where ¢ is the scalar potential for the P-wave and 14, is the vector potential for the SV-wave. The
wave normal for the P-wave can be found to make an angle 8, = + tan"!(¢/a) with the vertical axis

and the SV-wave can be found to make an angle 8, = % tan"(¢/f) with the vertical axis. By
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combining four of the SV-waves with four of the P-waves, cach with proper amplitude and phase,
the motion can be shown to be harmonic in the x, direction; the amplitudes vary sinusoidally
through the thickness, the phase velocity is v, = w/¢ and the wavelength is 2z/¢. Tor a plate free
of traction forces on the top and bottom surfaces, this can be described as motions which are
symmetric and antisymnetric about the mid-plane of the plate. Hence combining the symmetry
arguments with the traction free boundaries, equations for both the syminetric and antisymmetric
motions can be found. This includes the displacements w, and 1, the corresponding stresses which
must exist, and the transcendental equations which describe the dispersion relations between the

wave numbers. [or the symmetric mode,

uy = i(BE cos axz + CP cos fxz) exp i(éx) — wi)

uy = ( —Ba sin axz + C¢ sin fx3) exp i(éx; — o)

F, = (52 - ﬁz)2 cos ab sin b + 4afE2 sin ab cos fb=10

where the stress components can easily be calculated using the constitutive relations (ref. 11). For

the antisymmetric mode,

w = i(A¢{ sin axy — DB sin fx3) exp i(Ex; — wl)

uy = (Aa cos ax3 + D¢ cos fx3) exp i(éx; — wli)

= (62 - 52)2 sin ab cos b + 4cx/3§2 cosabsin fb=10

where the stress components can easily be calculated using the constitutive relations (ref. 11). The

variables A4, B, C and D are defined by
@ = (4 sin ax3 + B cos ax3) exp i(Ex; — w!)
and

1) = {(Csin fx3 + D cos fx3) exp i(¢x; — wi)
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Also, the slowness surface analysis produces the results

2
a2+52=ﬂz—
Yp

and

2

2 2 w
B+ ==

v

5

So, the slowness surface analysis for both the SV-wave and P-wave can be added to the F; equations
(stress frec boundary conditions) to obtain 3 equations which can be used to relate the variables
a, B, & and w. Thus, if one knows the mode of a Rayleigh-Lamb wave and either one of the wave
numbers or the resonant frequency, then they can find the remaining variables, as well as the dis-
placements and the stresses (up to a constant) as a function of time and space. Alternately, if any
combination of two of the wave numbers and resonant frequency are known the the mode of
propagation and the displacements can be determined up to a constant. For instance, the re-
lationships between physical variables has been utilized in NDE to derive a basic equation relating
the angle of incidence for the input wave in water to the ratio of the velocity of the input wave in
the water to the phase velocity of the Lamb wave (ref. 21). This basic information can be presented
in graphical form as a standard dispersion curve (see figure 6). A quick view of the dispersion curve
provides basic information on the characteristics of the wave propagation. Tirst, the higher the
wave number the higher the angle is between the vertical (x;) axis of the plate and the direction of
the input wave vector. Hence, a general indication of the frequenies present for a general range of
input angles for a given mode may be ascertained. The instantancous slope of the curves gives the
group velocity and the slope of an imagined line from the origin to the point for a particular mode

of wave propagation gives the phase velocity.

It is intcresting to note that the form of this solution for real values of { can be grouped into three
sets depending on the relation between /¢ with the velocities of the vertically polarized shear wave

(SV-wave) and P-wave. If w/¢ is less than v, then & and § are both imaginary. If w/¢ is greater than
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Figure 6. Dispersion curve for infinite isotropic plate [ref. 11]
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v,, but less than v, , then « is imaginary and g is real. Finally, if o/¢ is greater than v, then both the
wavenumbers become real. These three situations can be scen in the dispersion curve, below line
OFE where both « and g are imaginary, between line OL and OL where « is imaginary and f§ is real,
and above line OL where both wave numbers are real (ref. 11). The values of the wave numbers
dictate both the spatial variation of wave motion and the relative magnitude of various displace-

ments.

If one looks at the limits of the dispersion curve a varicty of interesting points can be made. In the
region where f ¢ is less than 1 both « and f arc imaginary, and ¢ goes to zero the solution for the

antisymmetric modes converges to

Q = (1301 = 1jk)?

wherc
Q=4
nvS
(Ds 'E
v
k=-
5
~ 20
E=—7x

and b is half the plate thickness. The symmetric mode does not have any solution for this limit in
this section of the dispersion curve. This resonant mode corresponds to that of the zero order thin

plate mode for flexural vibrations as predicted by elementary theory.

In region two, where a is imaginary and B is real, the symmetric mode is given as

38



Q=2 — 1Ji)3

when & becomes vanishing small. The phase speed of this mode shows up to be between that of
the SV-wave and the P-wave. This is the same solution derived by the elementary theory for high
wavelength extensional waves. Now, as E increases the solution approaches the linc OR. The

syminetric branch crosses the line OE at § = 0 with the solution going to

2ba

Q=E=.._"h_
n(l — 1k%)'?

ab

tanh ab = —22—_
41— 1jk3

Thus is related to the Goodier-Bishop wave, the waves produced at critical angles or grazing angles,
namely either when the SV-wave is exactly at the angle where it can no longer produce reflected P
waves or if a P-wave is incident at exactly zero degrees (ref. 142). Basically, these equations were
derived by taking the reflection equations and writing the tangent term as a power series of expo-

nential terms and dropping all higher terms.

As ¢ gets large, the fundamental symmetric and antisymmetric dispersion curves both approach the
line OR. This is in the region where both « and g are imaginary. The basic dispersion relation

reduces to
4af&* ~ (&2 4 pH2 =0

the phase speed of this wave is less than V.. Since, both wavenumbers are imaginary, both dis-
placement components vary hyperbolically across the thickness with maximum amplitude at the

top and bottom surfaces. Actually, the solution reduces to that of a Rayleigh wave in a half space.
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Hence, the symumetric mode goes through a {ransition from an extcnsional wave to a Goodier-
Bishop wave to a Rayleigh wave. This shows that the nature of the wavenumber for the input wave

governs the nature of the plate wave.

The Lame modes are found to exist if € = f. This causes the symmetric wave cquation to become
cosfh=0

and the antisymmetric wave equation becomes

sin gb=10

This causes t,, and 7, to disappear at the top and bottom surfaces. This in fact corresponds to
an equivoluminal wave, which is caused by the interference of pure SV-waves which are reflected

and incident at 0; =45° .

Simple thickness modes occur when displacement components are only a function of the x; coor-
dinate and time. In this special case, the three types of plane waves each can propagate betwcen
the top and bottom surface, independent of the other waves, setting up separate plate waves which
can be derived from the standard plate wave equations by setting ¢ equal to zero.  Also, simple
thickness modes are known as through the thickness transverse resonances (TTTR). These modes
correspond to where the higher order modes cross the ordinate (w-axis) on the dispersion curve (sce
figurc 6). Since the phase velocity is defincd as v = w/&, the phase velocity for the thickness modes

is infinite.

The manncr in which the phase velocities drop from infinity for the higher order modes, when ¢
becomes nonzero, can be seen in figure 8. Also, note the slope of the dispersion curve for the higher
order modes, near the thickness modes, are relatively low (figure 7), indicating that the group ve-
locity or rate of cnergy flow is relatively low. Thus, these modes are characterized by rather high
phase velocitics and rather slow modulating (group) velocities. Morcover, the first order symunctric

curve has a negative group velocity, indicating that energy should be flowing toward the sourcc.
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However as a general trend, these curves start with a very high phase velocity and a rather low
group velocities and move to higher group velocities (ie. the curves turn upwards at larger slopes)
with lower associated phase velocitics. Additionally, the higher the mode the flatter the curves tend
to become (in general) and hence the less the group velocity. Generally, the higher the mode, the
higher the phase velocity and the slower the group velocity. Phase velocities and group velocitics
vary along each of these curves and vary from curve to curve; hence, a great deal of dispersion is
associated with these higher order modes. It is again very important to note that for higher order
modes the frequency of the resulting wave changes very little with &, Thus, many ray angles of
input (9,) result in similar frequencies. Hence, a lot of energy may be created around these fre-

quencies.

Another interesting facet of the analysis of the Rayleigh-Lamb wave problem is the consideration
of imaginary and complex wavenumbers for ¢. Although, the existence of imaginary wave numbers
was recognized carlier, it was not until the 1950s that they were actually included in the analysis
and given physical significance. A great deal of this work was done by Mindlin, generating an in-
teresting body of literature. The amplitude of the wave for imaginary values of ¢ lead to the wave
being attenuated as the wave travels in the x, direction. Physically, for a finite plate, the cnergy
from this mode is channeled to edge waves on the side of the plate. Work by Mindlin shows that
in some cases these edge modes can still show significant displacements up to 30 times the plate
thickness from the edge (ref. 112). This type of phenomenon should be kept in mind for situations

when ultrasonic work is done on finite specimens, such as small laboratory samples.

Another interesting discovery was the existence of a second edge mode which is very constrained
to the edge, if the frequency of the propagating wave is greater than the first symmetric thickness
shear mode. Also, Mindlin and I'ox solved the problem of the real part of the solution for the
antisymmetric mode of a plate bounded on a single side. However, in general a total solution has

not been found for a fully bounded plate, which includes all edges and complex wave numbers.
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Figure 7. Simple thickness mode [ref. 11]
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The plate problem for an isotropic plate has a rich history, starting with experimental investigations,
followed by elementary solutions from many of the great scientific minds of the time. Eventually,
the general solution was obtained by Rayleigh and Lamb, showing that the elementary solutions
are approached in the limit of low frequency. I'urthermore, they showed the dependence which the
output has on the input wave forms and how these relate to the actual plate modes. For example,
simple thickness modes occur for an input of a zero wave number in the x, dircction, a totally
vertical input wave. Also, a Goodier-Bishop wave results if f is zero. Finally, it is intercsting to
note that the most general problem for all sides bounded is not as of yet solved, in general, howcver

particular aspects of it have been solved, showing the physical relevance of complex wavenumbers.

Anisotropic Plate Waves

Several investigators have looked at the problem of plate waves in anisotropic materials. As might
be expected, the anisotropic constitutive relation greatly complicates the analysis of the plate wave
problem. A variety of extra plate wave modes are created due to the extra modes of plane waves
which are possible. Also, the properties of the Lamb waves (ie. dispersion curves) depend on
azimuthal angle. Further complications arise due to the fact that all modes are coupled into the
same equations, hence vastly complicating numerical procedures. In fact, the full analysis of the
anisotropic problem would be prohibitive without the use of the computer. However, Ekstein did
formulate the full analytical solution to the problem for the case of orthotropic symmetry in 1945
(ref. 113). Detailed analysis of the dispersion relations of anisotropic materials were not developed
until Mindlin and co-workers used a variational approach (ref. 52). More recently the method of
transverse resonance or partial waves has been forwarded as a solution technique (ref. 127). Since,
this method is the basis of the approach used here to solve the plate wave problem for composite

plates, a short synopsis of this method will be provided for future reference.

In the method of partial waves, plate wave solutions are constructed from exponential waves that

are reflecting back and forth between the bottom and top surfaces. This approach considers plate
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waves to consist of traveling waves in the direction of propagation and standing waves through the

thickness.

The exponential trial solution is expressed as

= ao; expli(kyx; — wi)]

This is then substituted into the Christoffel matrix to obtain
(kyycyshg; — szé,-j)ff,' =0

In this work, the subscript convention is as follows
Li=1,2,3 I,J=11,2233,23,13, 12

The k,; matrix is defined as follows

ke 00 0 Kk Kk
0 0 k k ke O

and k;; is the transpose matrix. The partial waves are coupled to each other by reflections at the

surfaces in accordance with Snell’s Law
kl = k = (D/V
where v is the plate wave velocity. The particle displacement vector then becomes

19 = aj Cxp[ik(x] + [2X2)]

where

h=hklk
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for every partial wave solution.

The substitution of the equation for u into the Christoffel matrix results in a system of three ho-
mogeneous linear equations for the a; values, with coefficients that are functions of density, fre-
quency, and the stiffness matnx terms. This results in a 6th order polynomial for 4 with six

resulting roots

Next, the displacement field may be taken as a linear combination of the six allowed partial waves.

Mathematically, this may be expressed as

6
U= Z Cnaj(") explik(x + £72)]
n=1

These expressions may be used with constitutive relations to yield stresses. These stresses may then

be used in the boundary conditions
Ta=T3=03=0

at z=+ /2. This leads to a system of six homogeneous linear equations where the coefficients of
C, are now functions of p , ¢, v=w/k, and hk . Setting the determinant of the system of equations
to zero results in the dispersion relations, which yields information on the dependence of velocity
on frequency. These can be used to derive the commonly used dispersion curves with the infinite
number of branches. Furthermore, the system can then be solved to find relative values for the

C, values. Thus, an indication can be obtained on the relative displacements occurring in the plate.
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As mentioned, investigation of these relations results in a number interesting phenomena. These
include a number of additional modes not seen in isotropic materials (ref. 11). The general char-
acter of the dispersion curves for anisotropic materials is similar, however the curves have more
jumps and the extra modes lead to extra curves. Also, the dispersion curve is different for different

azimuthal angles. Additionally, pseudosurface waves exist, which leak energy (ref. 127).

Applications

The theory of Lamb waves has been utilized for a number of applications. Mindlin and coworkers
utilized the theory of Lamb waves to predict behavior of resonators for radio communications.
Also, the theory of Lamb waves has been used to explain acoustic emission results (ref. 129) and

for use in nondestructive testing (refs. 21).

Through Thickness Resonance

The through thickness resonance mode (simple thickness mode) corresponds to the constructive
interference of either a P-wave or an S-wave reflecting back and forth perpendicularly between the
top and bottom surface. This mode of plate wave corresponds to the intersection of the higher
modes with the frequency axis. As mentioned, these modes have a theoretically infinite phase ve-
locity. The frequencies and displacements of these modes are simple to calculate and are given, for

an orthotropic material, by the following equations:

Symmetric Modes

(@) uy; =B sin(mn x

3 — —
2b) yy=0 m=13,..
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X
(&) wu = C cos(an —,—)—[3)—) =0 n=2,4,..

Antisymmetric Modes

. X3
(@) u =D sin(nr 35) W= 0 n=13,..
X3
(b) u3=A'cos(mn-E w=0 m=24,..

Frequencies

nve

fp: P f= 2t

C C Cs
= () =55 w=(57)

For Isotropic Materials

PP o
Ca=U= 00—
E
C44=C55= 2(1 _{W

where t is the plate thickness, N = 1,2,3,... and C; arc stiflness matrix values expressed in reduced
tensor notation (reference 13).  Tence, if C,, docs not equal Cy, cxtra resonances may oceur
through the thickness. Also, for materials in which the x-axis is mot in a plane of orthotropic

symmetry, the shear wave velocities are affected by coupling terms in the stiffness matrix.
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Also, the shear wave resonances are polarized, for anisotropic materials, due to the polarization of
the S-waves in the x; direction. This is suspected of contributing to experimental results presented

in chapter 4.

The simple thickness vibrations described by these equations are for very idealized conditions, with
infinite plane waves propagating absolutely normal to the top and bottom surfaces. However,
understanding these results may be of some use in understanding AU results. First, although much
of the AU wave disturbance is not due to plane waves resonating absolutely perpendicular to the
top and bottom surface, the AU waves are thought to be a result of reinforcing of plane waves with
very small angles from the normal. Hence, simple thickness modes may have many of the same
properties of AU waves, and thus physical understanding of the AU waves may be gained by
understanding simple thickness modes. Additionally, understanding how plane waves combine to
meet boundary conditions and cause resonance may help to understand how the very early low
frequency, low amplitude part of the AU signal is created. This problem may be better understood
by relating Green's function results to Lamb wave equations. Although the early part of the signal
is of very low amplitude, it may provide a great deal of information concerning the state of the
material. Hence, understanding the simple thickness mode may be very useful in understanding

the AU method.

Analytical Ultrasonics

Analytical ultrasonics entails measuring material microstructure and other variables which control
the mechanical behavior of materials (refs. 20, 21 and 25). The ultimate goal of this approach is
to be able to assess a material’s strength, moduli, toughness, and other properties which can be used
to predict future material behavior. The realization of this goal will depend on developing more

advance models of wave/material interaction, better understanding of basic material behavior, better
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understanding of excitation mechanics, better experimental cquipment (transducers etc.), proce-
dures, and more advanced signal processing techniques. Ilence, advancement of analytical ultra-
sonics requires improvement in wave propagation models and better experimental tools. A few
comments, concerning this area, is provided in this section to provide information which may be

pertinent to the AU method.

Green (ref. 27) gives a good overview of the general state of technology in analytical ultrasonics.
Ile discusses pertinent issues such as material behavior models, wave excitation sources, and
measurement methods. Since the AU method and analytical ultrasonics are undeniably coupled,
issues important to analytical ultrasonics are important to AU and vice-versa. In general, analytical
ultrasonics uses wave propagation theory and experimental work to predict the future behavior of

materials.

First, the attenuation of a wave can be used to obtain information on a material. The attenuation
of a wave in a material may be caused by material dissipation mechanisms, scattering, reflection of
the wave or more likely a combination of all of these. The measurement of stress wave attenuation
is the method used to produce the often used ultrasonic C-scan. In many applications, the atten-
uation of a stress wave as a function of frequency is measured (ref. 36 and 74). This is especially

useful for obtaining detailed information on microstructure. Models of this are discussed later.

Another source of information derived from stress wave propagation is the wavespeed. A simple
application of this is the use of wavespeed to measure the moduli of a material. In fact, Kriz and
Stinchcomb (ref. 128) used this approach to obtain the full stiffness matrix for a Gr/Ep composile.
More recently, Kline and co-workers (ref. 17) have developed a method where obliquely incident
waves are transmitted into a specimen and received at another point. This is performed during an
ultrasonic C-scan at several orientations and then a numerical procedure is applicd to the wavespeed
measurements to determine stiffness matrix quanities. Other researchers have utilized the meas-
urement of the phase velocity of Lamb waves as an NDC method (refs. 12, 13, and 89). Also,

wavespeed measurement is used to determine residual stress. This is due to the inherent nonline-
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arity of material moduli and changes in density do to changes in bulk volumes. Acousto-clasticity

(ref. 38) is a specific subarea of elasticity devoted to the study of this phenomenon.

Dispersion is another phenomenon associated with wave propagation that can yicld information
on micro- (ref. 51,105, and 107) and macro-structure. Dispersion is when waves of different fre-
quency travel at different specds. This can result in sine waves of varying frequencies scparating in
the time domain (see experimental results). Dispersion can be caused by small particles or phascs
in a material that effect the acoustic velocity of waves for certain frequencies of wave propagation

and by waveguide dispersion (e. g. note the nonlincarity of Lamb wave curves).

Also, of concern in analytical ultrasonics are developments in mathematical theories for analyzing
waves. Equally important is the development of computational methods for making calculations
based on the mathematical theory. One example of this type of work is that of Pao and co-workers
with the generalized ray theory (ref. 122) for calculating transicnt plate responses. Also, the Green’s
function has been utilized to calculate transient plate responses (ref. 121). Also, Vasudevan and
Mal (ref. 129) have used a transform integral technique to determine the transient response of an
elastic plate to a buried source. This involves summing residues of the dispersion relations from
the boundary conditions and transforming from the frequency domain to the time domain. The
residues occur at the through-thickness-transverse-resonance frequencies and at the minima of the
first order symmetric and third order antisymmetric mode. The procedure excludes the effects of
the negative group velocity regions. Also, a small complex perturbation term was introduced into
the FFT to account for attcnuation. Their approach and results scem to show some correlation

with the work in this dissertation.

Another area where wave modeling can be applied to ultrasonics is trying to understand the near
field (Fresnel field) and the far field (Fraunhafer region). The Fresnel ficld is characterized by re-
gions of alternating pressures. The Fraunhafer region has lobes of fairly constant pressure (de-

scribed by r — 6 plots (ref. 21).
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Also, Claes (ref. 140) has outlined an interesting solution to the plate wave solution in an isotropic
plate due to an axisymmctric source. The solution yields Bessel functions which account for the
decrease in amplitude due to waves diffusing from the source. The solution degenerates to a basic

plane wave solution at a large distance from the source.

Mathematical models of frequency dependent attenuation have been developed and have been used
to explain ultrasonic data (ref. 74). A partial list of attenuation mechanisms and their mathematical

effects are listed below:
Rayleigh scattering-«, = ¢,a’f*
Stochastic scattering-a, = ¢,a/?
Diffusion scattering-a, = ¢,a"!
IHysteresis losses-a, = ¢,f
Thermoelastic losses-«, = ¢,/
Viscous losses-show second order frequency dependence

Absorption losses (dislocation vibration, internal friction, and relaxation effects)-show second

power down to first power cffects on frequency

In the above expressions fis frequency and a is the grain size or discontinuity size. Various authors
have attempted to relate these models to form single equations describing the frequency dependent

attenuation of various materials (ref. 74).

An important facet of analytical ultrasonics is understanding the transducers. A number of papers
have been published on various ultrasonic sources which may be utilized (ref. 68). These sources

include:
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Piczoelectric
Gas jet
EMAT
Laser
Spark gas discharge
High resistance metal sheets
Capacitance
The physics associated with cach of these sources is a separate arca of research.

The piczoclectric transducer itsclf is continually being refined and improved, resulting in a great
number of different transducer properties. For instance, new products, such as KYNAR film (ref.
165) and dry couplant transducers (ref. 166), are adding to the possible choice of piczoclectric
sources. Characterizing the properties of various transducers and understanding their effects is a
heavily researched area of ultrasonics (refs. 133 and 110). The following are just a few of the con-

cerns with characterizing piczoclectric transducers:

Relationship between voltage-current and force-displacement (Lincar system response matrix)

(ref. 133)
Transduccr diameter (ref. 21)- see fig. 9
Phase cancellation effects (ref. 152)

Uniformity of displacement on transducer face
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Frequency response of transducer (fig. 24, chapter 3)
Crystal type (longitudinal or shear)

Proper orientation of transducer in casing

Coupling mechanism and effects

‘These effects strongly influence all analytic ultrasonics methods and most assuredly results scen in

the AU method.

I’iﬁally, advances in signal analysis are of great interest to researchers in analytical ultrasonics. Tor
instance, a number of early papers on the AU technique (refs. 7 and 63) were concerned with signal
analysis. These involve areas such as pattern recognition (ref. 143), Touricr analysis, analytic signal
(ref. 16), and various fields of digital signal processing (ref. 2). Many of these concepts will be

covered in the following section.

Acousto-ultrasonics

The acousto-ultrasonic technique involves exciting ultrasonic stress waves at one position on a
material surface and sensing the wave at another position on the same material surface. In gencral,
various cxcitations, sensors and analysis software can be used to perform the mecthod as is shown
in figure 1 (chap. 1). Most implementations of the method to date have involved using ultrasonic
piczoelectric transducers for both sending and sensing the stress waves. However, the use of pulsed

laser excitation of stress waves is currently under investigation by several investigators (ref. 161).

Two major advantages of the AU method over other commonly used methods are that:
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Access to only one material surface is required

Can propagate stress waves in direction of loading

[lence, although a number of methods exist for nondestructively testing a material, the AU method
has the advantages of only requiring access to onc surface and yiclding information on in plane

material properties.

The general contention of the AU method is that a section of material which adequately transmits
stress waves will also properly transfer stress under loading and hence be less prone to fracture.
‘Thus, one facet of the AU method is to simply make comparisons of the encrgy content of an ul-
trasonic signal that is propagated between two positions on a piece of a material. The idea is that
if a high energy content signal is produced between two points, then the area of material between
those points will be able to resist fracture more than a similar arca of material between two points
where a weak signal is obtained. Tor instance, a damaged area (dclaminations, matrix splits, de-
bonds etc.) will, in general, reflect and absorb energy in a stress wave and will also, in most cases,
(except in certain instances where stress concentrations are lowered) result in arcas where fracture

may initiate.

Understanding the mechanics of how damaged areas interact with stress wave propagation encom-
passes areas of the theory of stress wave propagation and analytical ultrasonics. However, the first
step in understanding any ultrasonic method is to develop a model for the idealized case where
simple material constitutive relations govern the problem and the materal is in perfect condition
(defects and damage do not alter the material’s response). Then, more complex material behavior
may be accounted for by adding to the simple modcl or by using the simple model as a basis for

developing more complex models.
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Early Research

The name acousto-ultrasonic is derived from ultrasonic evaluation and acoustic emission monitor-
ing; in fact Vary attributes the basic idca to acoustic emission work done by Egle and Brown (ref.
137). Egle and coworkers utilized what became the AU configuration to simulate acoustic emis-

sions in order to better understand acoustic emission results (ref. 134).

It should also be noted that prior to the actual adoption of the AU method for composite materials,

similar types of experimental configurations were being utilized for conventional materials (rcf 74y,

The pioneering work on the AU method was conducted by Vary and co-workers at NASA Lewis
(Ref. 5). This work entailed introducing the term Stress Wave Factor (SWF) to quantify the energy
in the AU signal. The SWF involves measuring discrete voltages in the signal at a selected sampling
rate and counting the number of voltage peaks above a preselected threshold voltage. SWT mcas-
urements were made in the cross fiber direction on a number of unidirectional Graphite/Polyamide
composite coupons which had been subjected to varying cure pressures. Next, the coupons where
subjected to a three point bend test to determine interlaminar shear strengths. Results showed that
the lower cure pressures resulted in lower SWT and lower material strength. It was also noted that
the lower cure pressure resulted in a greater void content. In general, this early work showed that
AU can be used to give a rclative indication of interlaminar shear strength for unidircctional com-

posites. Figure 10 shows the results obtained by Vary and coworkers.

The initial work by Vary and co-workers stimulated additional investigations by other rescarchers,

that resulted in a number of observations and methods of signal quantification.

First, Govada et. al. supported Vary and coworker’s results that SWF measurements taken at dis-
crete locations along the length of a thin composite specimen could be used to predict failure lo-

cation for uniaxial loading (ref. 88). The basic premise of this work was that the area of low SWF
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would be the arca of failure during unidirectional loading. owever, the work revealed that an
averaging technique had to be used which accounted for the proximity of the sending transducer

to the arca being measured.,

Further work at Virginia Polytechnic Institute (VPI) revealed that the SWF factor decreased with
fatigue loading (ref. 6), hence, showing that the AU technique is a good quantifier of fatiguc dam-
age. In fact, figure 11 shows how the SWFE [actor (energy measurement) compares to stiffness
mcasurement as a function of fatigue life. As mentioned, this indicates that the AU measurcment

might be a more scusitive measurement for use in fatigue models than stiffness degradation.

Larly work by Williams and coworkers at Massachusetts Institute of Technology involved evalu-
ating impact damage (ref. 56). Also, work was done using frequencies generated in the AU tech-
nique to determine the dispersion of composite materials at those frequencies (up to 5 MIlz) (ref.
30). It was found that no material dispersion occurred at these frequencies. Further work by
Karaguelle involved using ray tracing techniques to model the AU technique in an aluminum plate
(ref. 49).  This model assumed the transducer imported a uniform normal stress where the
transducer contacted the specimen and treated the elasticity problem as a half space problem to
calculate resulting wave propagation. The successive reflections of these waves are traced to deter-
minc the resulting behavior of an aluminum plate.  However, the solution technique and certain
assumptions causc numerical instabilitics if /2 < 1.6, where A is the plate thickness and 4 is the
wavelength of a P-wave.  This causes problems in trying to apply this theory to experimental re-

sults found using the original AU set-up.

Williams and coworkers also discussed the possibility of exciting structural resonances in certain
configurations (ref. 112), however, the frequencics of these resonances must be in the range of the
input transducer and other experimental equipment. Generally, structural resonances are not ex-
cited with the conventional AU sct-up in laboratory conditions, but depending on the cquipment

and structure, structural resonances may very well be set-up during ficld application of the AU
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method. The matching of experimental equipment to the material and structural application should

be considered separately for cach application of the AU technique.

Subsequent advances involved the introduction of more advanced signal processing techniques.
This helped to develop a more refined method and helped to start explaining the physics of the AU

mcthod.

Karaguclle and Williams applied “homomorphic signal processing” to the detection of flaws in an
aluminum plate (ref. 63). This work involved picking out the signal from one particular reflection

pattern, by deconvolving a short portion of the signal which may contain multiple reflections.

Talreja and Henncke introduced the use of theory from random noise involving moment calcu-
lations from the frequency domain to quantify information in the AU signal (ref. 7). Moment
calculations were obtained by intcgrating the product of the AU signal’s spectral density function
(obtained by taking the FI'T of the AU signal and squaring amplitude values) and the frequency
over the frequency domain. Parameters can then be calculated, from these moments, that describe
certain characteristics of the signal (e.g. energy content and centroid frequency). This approach
marked the beginning of the evolutionary process which led to this dissertation. Iience, a more
detailed description of the work done using this approach is provided. This includes a description
of sofiware, basic equations, and ensuing experimental results. The program described below is an
carlier version of the program used to obtain results in chapter four; however, this program was
used to generate results for this chapter. These results will be discussed in the chapter on physical

understanding,.

AU Analysis Software

In particular, a description is presented of a computer software package used to analyze the AU

signal (ref. 10) and gencrate results. The intitial step in the computer analysis is to retricve the
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digital signal from the storage disk, where it has been stored during the AU data acquisition phase.
This involves reading information on gating parameters and then the bit representation of each
voltage. These bit representations are used to calculate actual voltages and time values. Next,
voltage/time graphs can be gencrated for observation of general signal characteristics.  Additional
subroutines allow for the signal to be gated and for any DC bias to be removed from the signal.
Estimates of wave arrival velocities are made by dividing the transducer separation distance by the
time of wave train arrival (ie. first non-zero voltage reading) as measured from the instant of trig-
gering. In addition, phase velocity estimates were made for certain cases by increasing the
transducer separation distance and noting the translation in the time domain for a particular point
in the wave pattern display, wave train. A peak in the time signal could be followed on the com-
puter screen as the receiving transducer was moved away from the sending transducer. For certain
signal content, the general shape of the signal changed very little as the receiving transducer was
translated on the specimen. Hence, this procedure was applied to parts of the wave train which
contained predominately a single frequency content in order to determine a wave speed to be as-

sociated with a particular frequency of wave motion.

A fast Fourier transform (FFT) algorithm was used to yield frequency domain information on the
gated digital voltage/time data. The voltage/time data was gated from the first non-zero voltage
reading to the end of the wave train. Using the FFT, amplitude/frequency and phase/frequency
data were generated, the amplitude/frequency data were plotted and AU parameters were calculated.

The equation describing the amplitude values calculated via the FFT is:

n—1
X, = % Z v, o~ i@mkrin)

r=0

where v, are voltages and f; = k/(nAt) is the frequency corresponding to X;.
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The determination of AU parameters involves calculating various moments of the spectral density
(the square of the amplitude values S, = X7) about the vertical axis, S, axis (sce figure 12). For

instance if S(/} is the continuous spectral density function, the n-th moment is defined as:

M, = LfmS(/)/"dﬁ

where £, is the Nyquist frequency. In the case of digital data, the integration is replaced by a

summation to yield:

(m—1)
(S, + S,
My= > S Anf+ A0,
k=0

where S, are the spectral density values, f; are the corresponding frequency values and Af is the

frequency difference between f; and f,,. For instance, the zeroeth moment (M,) is dcfined as:

My = fof”sg)df

or for the digital data obtained experimentally

(m-1)

My = Z (S +2Sk+,) A

k=0

M, is simply the area under the spectral density curve. This can be analytically related to the mean
square of the voltage signal. For application to AU signal evaluation, M, is renamed Al. There-
fore, Al is an indication of the amount of energy in a received signal. A2 is defined as M,[M, and
is the central frequency of the signal. A signal with a higher A2 is transferring proportionally more

energy at higher frequencies than lower frequencies when compared to a signal with a lower A2.
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In addition, A4 is defined as (M,/M;)S and A3 is defined as (My/M,)*. A4 is the frequency of
maxima and A3 is the frequency of zero voltage crossings (reference 5, page 92). The quantity
Ad4/A3 is known as the distortion factor and is an indication of the amount of high frequency signal
in a predominantly lower frequency signal. Figure 12 indicates how the moments are related to the
spectral density function. Again, it should be kept in mind that the spectral density function is the

square of the amplitude function for a given frequency value.

In order to obtain more specific information on the acousto-ultrasonic signal, filtering capabilities
were included in the the digital signal software analysis (refs. 9 and 10). Basically, this involves
calculating M, for a particular frequency range. Thus, the arca under a specific portion of the

spectral density curve can be obtained. Mathematically, this may be expressed as:

fi
My = J S(df,
1,

where S(f) is the spectral density function, f; is the low frequency end point and f, is the high fre-
quency end point. In the summation equation, this involves only .summing for the values of &
which correspond to the S, values of interest (ie. corresponding to a peak). In particular, this fea-
ture is used to find the area under one frequency peak in the amplitude/frequency plot, yiclding a
parameter which is indicative of the amount of energy transferred at a particular vibrational fre-
quency range. Initially, observation of amplitude/frequency plots revealed the occurrence of certain
amplitude peaks at the same frequency for a given plate thickness, regardless of plate lay-up or
azimuthal angle. The amplitude/frequency plots for different azimuthal angles were then examined
to determine values for £ and f;. Next, the determined fj and f, values were used to calculate filtered
moment values from the AU signals obtained at different azimuthal angles. Figure 12 displays how

filtered Al values are calculated and the nomenclature used for a particular calculation.
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Results

“The observation of time domain results and amplitude;/frequency plots revealed basic infortnalion
1o be used in understanding the AU method as well as providing information to be uscd for both
calculating and interpretating AU parameters. I'igures 13 and 14 show some sample voltage/time
(V/T) and amplitude/frequency (A/F) plots. Tigure 13 shows the dominance of the 1 Mz and
the 3.4 M1z frequency peaks in the spectrum for the signal obtained in the O degree direction of
the 4-ply zero degree plate with no gate applicd to the signal. Also, it should be noted that the 3.4
MI1z peak is about 75 percent the amplitude of the 1 MII2 peak. In contrast, the voltage,time plot
in the 90 degree dircction for the 4-ply zero degree plate (figure 14) revealed a signal with only the
| MIIz signal content and shows a steady amplitude throughout the signal, without the high signal
content carly in the signal. Observation of the corresponding amplitude;frequency plot reveals that
the 3.4 MIlz frequency content is still present, but comparatively less than the dominant 1 Mllz

content.

To gain insight into the influcnce of plate thickness on the observed AU behavior an 8-ply 0 degree
l%minatc was cxamnined and directly compared 1o results obtained on a 4-ply 0 degree laminate. A
summary of obscrvations made from voltage/time and amplitude, frequency plots in the 0 and 90

degree direction follows:

For 4-ply laminates amplitude peaks in the amplitude/frequency plots consistently occurred

at | MIlz and 3.4 MIlz

For 8-ply laminates amplitude peaks in the amplitude/frequency plots consistently occurred

at 500 kllz and 1.7 Ml

The experimental results for the variation of AU paramcters with azimuthal angle for the [0,0,0,0]

laminate can be scen in figures 15-18. Figures 15-16 show the variation of Al and A2, respectively.
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The plot of Al versus azimuthal angle for a 4-ply zero degrec laminate (figure 15) shows the de-
crease in Al with azimuthal angle up to 45 degrees and then the relatively constant value obtained
between 45 and 90 degrees. The plot of A2 versus azimuthal angle (figure 16) shows a pcak A2
value at 15 degrees. In gencral, unidirectional panels showed a peak A2 value betwecen 10 and 20
degrees to the fiber direction (this same type of variation also occurred for the A4jA3 paramcter).
The variation of E, with azimuthal angle is compared with the variation of Al in figure 15. The
behavior of Al and A2 with azimuthal angle seen in this data has also been seen by another re-
searcher (ref. 99). Figure 16 also shows the variation of the cocflicient of influence with azimuthal
angle and how it compares to A2. Tlence, AU scems to mimic the variations in material propertics,
One purpose of AU modelling is to determine the exact relationship, so that AU may be used to
make more exact evaluations on how material propertics vary with azimuthal angle. Figures 17 and
I8 show the variation in energy content for the resonant peaks at 1.0 Mz and 3.4 MHz, by dis-
playing how A1(.8,1.2) and A1(3.2,3.6) are affected by change in azimuthal angle. The variation
of Al(.8,1.2) with azimuthal angle is similar to that of Al. Also, notice that the behavior of
Al(.8,1.2) seems to show the same behavior as E, (figure 17), once again showing the relationship
between AU response and mechanical propertics. However, notice that the A1(.8,1.2) descends
more rapidly and reaches a fairly constant value at approximately 30 degrees.  The plot of
Al(3.2,3.6) versus azimuthal angle reveals a much slower descent of AI1(3.2,3.6) at angles under 20
degrees and then a quick descent to a fairly constant value between 20 degrees and 45 dcgrecs,
showing behavior more similar to the reduced stiffiess matrix value 0, (figure 18). The plot of
Al versus azimuthal angle (figure 19) for the [90,0,0,90] plate cxhibits a quick descent from a rela-
tively high value at an azimuthal angle of 0 degrees and a slower descent from a maximum value
at 90 degrecs, reaching a minimum value between 40 and 50 degrees. Also, the characteristic peaks

at 15 degrees to fiber directions for the [90,0,0,90] laminate can be scen in figure 20.

Figure 21 displays a plot showing the rather extreme decrease in A1(3.2,3.6), especially in the fiber

direction, for AU on a specimen with a delamination. Also, the value of A2 for the case of de-
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Jamination is shown to lose the characteristic peak at 15 degrecs. Also, notice the plots compare

AU parameters to the variation of matcrial properties. This is also discussed in refercnce 9.

Current and Future State of AU Method

Currently, a number of investigators are working on various applications of the AU technique.
For instance, Duke and Kiernan have looked at the use of the AU technique to predict the direction
of damage development in impacted Gr/Ep panels (refs. 100). This includes understanding the ef-
fect fatigue damage has on AU results compared to the cffect it has on impact damage. Ilence,
cfforts are alrcady underway to use the AU method to determine the effect damage has on futurc
material response. Finally, this research has looked at how the variation of AU with azimuthal
angle is altered by damage resulting from impact. In some instances, this has caused change in the
location of high AU values. It may be that this gives some indication of how stress is redistributed
for loading of impact damaged specimens (note the high AU measurement is not nccessarily for
right over the damage, but for close to the damage). Ilence, this could be utilized to determine a
stress concentration factor and suggest the direction in which damage may grow. This rescarch has
also shown which AU parameters are most sensitive to carly fatigue damage. Other applications
include the usc of the AU technique to detect the density of trans-ply cracking in composites (ref.
102) and the application of the AU technique for predicting hygrothermal degradation (ref. 103).
Other authors have utilized the statistical nature of AU measurements to quantify damage (ref. 146).
The AU method has also found application to such diverse arcas as adhesive joints, bones, and

wood (ref. 144, 145 and 167).

Futurc work with the AU method may involve using the analytic signal to quantify the AU signal.
This approach would allow measurements of energy rate and group velocitics.  Also, this may be
combined with other advanced forms of digital filtering to gleen even more detailed information

from the AU signal.
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Figure 15. Al, modulus versus azimuthal angle for 10,0,0,0] laminate
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Figure 18. A1(3.2,3.6), modulus versus azimuthal angle for [0,0,0,0] laminate
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Although numerous applications of the AU technique have been found, there is still a general lack
of understanding concerning the physics of the method for the application to composite plates.
Several authors have noted that Lamb waves seem to be present in signals (ref. 9 and 95). However,
there seems to be no specific mention of the modes which are present and how they are excited.
Kautz (ref. 97) has suggested using the ray tracing technique as a model, but has yet to fully apply
the approach to composite materials. This approach involves modelling the high frequency portion
of the signal as a guided wave in the fiber. Other authors have suggested using diffuse wave theory
(ref. 148) to describe the AU technique. However, a working model has yet to result from this
work. In general, although the AU method has been applied to a variety of applications for com-
posite materials, no real model exists for the method. Moreover, the basic physical understanding
of the wave motion occurring in the AU method is still not well understood. In order to gain full
advantage of the method and obtain quantitative information on the state of a material, a basic
model must be developed which relates the mechanical state of the material to AU results. Thus,
it is the goal of this proposal to understand the basic physics of the AU method for composite

materials and to propose an elementary model of material response associated with the AU method.
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Experimental Procedure

A very important facet of modeling and understanding any NDE method starts with a thorough
consideration of experimental equipment, procedure, and analysis. As mentioned earlier, develop-
ing transducers, computer software, and AU systems is a subject of current research. Although
results have been obtained using a number of transducers and experimental arrangements, this
section describes very specific experimental arrangement and computer analysis which were used to
obtain the bulk of the results utilized for this work. However, comments are offered on some re-
sults obtained with other experimental arrangements and the effect of changing various aspects of
the set-up on results. Also, comments are offered on how various aspects of the experimental

set-up and procedure relate to the physics of the problem.

The experimental equipment consists of a pulsing/receiving unit, a preamplifier, 2 piezoelectric
transducers, and an IBM-XT equipped with a data acquisition system. Each of these items can
be seen in the system set-up diagram, figure 22. It is very important to note, that for the exper-
iments discussed in this work, the transducers are positioned normal to the face of the plate which
is under examination. However, some additional experiments were performed with the transducers
at a ten degree incline. Material thickness, mechanical properties, and geometry are other very

important factors for interpreting and modeling AU results.
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The major concern with an experimental sct-up, beyond instrumentation and proper electrical
connections, is the proper positioning of the transducers. This involves where on the plate each
of the transducers is placed, the uniform application of couplant, and placing proper pressure on
cach transducer. The AU method characterizes the material between the sending and the receiving
transducer, where tilc sending transducer is pulsed to generate the excitation and the receiving
transducer senses the disturbance at another position on the material surface. Hence, this method
is concerned with characterizing a general region. First, the general size of this region is defined by
the distance between the two transducers and the size of the active elements of the transducers.
‘T'he distance between the transducers is defined by the variable d . Varying the value of d may be
utilized to gain information on the characteristics of wave propagation. Secondly, the dircctional
orientation of the transducers on the plate is an important parameter, especially when working with
anisotropic materials. This is characterized by the azimuthal angle (), defined in chapter 2 (figure
3). Finally, the exact coordinates for the position or general area being characterized should be
determined. For instance, the coordinates of the point directly between the transducers could be
utilized. Hence, a coordinate can be defined to designate a general region and then the variables d
and @ may be varied to obtain AU signals to characterize the given region. Most of the results
presented in this work are meant to show representative results for an undamaged composite plate.
Thus, the experiments were performed at the center of the plates, in order to minimize the effect
of edges. Therefore, the results given in this work will not state coordinates for the position on the
plate where the AU method was performed. However, in this work major emphasis is given to how
varying d and 6 affects AU results, leading to physical interpretation of the character of the wave
propagation generated and measured with the AU method. Also, results are included that indicate
how the transducer diameter a affects the AU signal. Additionally, consideration is given to how

the resonant frequency of the transducers affects AU results.
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Figure 22, Experimental configuration
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Experimental Set-up

The experimental procedure begins with the data acquisition board on the computer sending a
trigger pulse to the pulsing unit. Upon receiving the trigger pulse, the pulser produces a high fre-
quency electronic pulse, that passes to the sending transducer. The sending transducer converts the
clectronic energy of the pulse to a mechanical excitation on the face of the plate. This excitation
induces wave propagation motion in the plate, that travels in the plane of the plate. The motion
induced by this wave propagation is sensed by the receiving transducer, which converts the motion
from the wave propagation to an clectrical signal. This clectrical signal is the source of signal
analysis for the acoustic-ultrasonic method. First, the signal from the receiving transducer is am-
plified by a preamplifier. Then, the signal from the preamplifier is sent to the pulsing/receiver unit.
The pulsing/recciving unit allows for high pass filtering of the signal, gating of the signal, attenuating
of the signal, and further amplifying of the signal. The conditioned signal is then connected to an
analog to digital (A to D) converter board in the PC by means of a BNC connector. The A to D
board is triggered to start taking data by the same trigger pulse which is sent to the pulsing unit
initiating the cxcitation pulse. Ilence, the time of a disturbance in the signal relates to the time after
cxcitation. The digital signal is displayed on the CRT screen in nearly real time, much as with an
oscilloscope. This can be used to make immediate observations on time domain information.
System software allows the signal to be frozen on screen and for spectral information to be obtained
through an I'I'T on up to 512 points. A screen displayed gate, whose length and position in the
time domain is keyboard controlled, is used for selecting the points to be used in the FIFT. Finally,
the signal can be stored for further analysis using keyboard control.  Further analysis is performed

using moment calculation software, such as was described in the second chapter.
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Description of System Components

Pulser/Receiving Unit

A Panametrics model 5052 pulsing/receiving unit was used to provide the excitation pulse. The
cnergy and damping settings allow some control of the pulsec width and voltage. The exact re-
lationship between these scttings can be found in the reference manual (ref. 158).  TFour encrgy
settings exist which allow the input amplitude to be varicd between 100 and 300 volts (TYP), de-
pending on the damping sctting. The damping can be varicd from 25 to 500 ohms. The pulsc
width varics between 10 to 600 nanoscconds, depending on the energy setting and damping. In-
creasing the energy setting or the damping causes the pulse width to increase. A high sctting for
both causes a drastic increase in pulsc width which may decrease the signal input of high frequency
cnergy and hence decrease the relative amount of high frequency content in the output signal. The
receiving part of the unit offers the capability of amplifying the signal cither 20 or 40 dB and at-
tenuating the signal from 0 to 68 dB (with 2 dB increments). Also, the signal may be high pass
filtered above 1 kllz, 30 kllz, 100 kHz, 300 kIlz and 1 MHz. The upper cutoff frequencies are

well out of the range of the other electronic components.

Preamplifier

A Panametrics ultrasonic preamplifier with 40 or 60 dB gain settings was used. The bandwidth for
the preamplificr is .02 to 10 MHz. The purpose of the preamplifier is to amplify the signal from
the receiving transducer, so that it is of proper amplitude for the receiving unit electronics. For the
work reported in this dissertation, the preamplificr seemed to have little effect on results, besides

amplifying the signal. Iowever, if a battery operated preamplifier is uscd, care should be taken not
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1o let the batteries run low. In carly experiments with battery operated preamplifiers, it was noted
that amplitudes of AU signals decreased due to batteries losing power. The major concern with
preamps powered {rom electrical outlets is making sure the power line is clean or isolated from noise
in the working frequency range. The other major concern is that the signal is well inside the

bandwidth of the preamp, again this had little effect on the results reported in this dissertation.

Transducers

Transducers are probably the most difficult part of the system to characterize and model. Research
in this area is discussed in the literature search. In addition to the inherent difficulty of character-
izing the response of the transducer, is the problem of understanding how the couplant transmits
the pulse of the transducer to the material surface. This includes concerns with keeping the
transducer properly oriented. For the tests performed, SONOTRACE 30! ultrasonic couplant was
used. The couplant proved to be fairly viscous, so care had to be taken in applying the couplant
evenly. Finally, the viscous nature of the couplant made it somewhat slow in flowing into the ridges
left by the scrimcloth. Hence, care was taken to allow ample time, or atleast consistent time, for

couplant flow before performing AU measurements.

Although a number of transducers were utilized in the experimental work conducted, the exper-
imental results presented in this dissertation were obtained using two pairs of Panametrics
piezoelectric transducers. Both pairs are 2.25 MHz center frequency broadband, heavily damped,
transducers. Tigure 24 shows the frequency response of the half inch transducer, obtained by a
pulse echo test on a large aluminum block. Even though the transducer is broadband, there is a
very definite frequency dependent response associated with the transducer. Efforts to try to account
for the frequency dependent response of transducers are covered in reference 10. Figure 23 com-

pares the AU frequency responses obtained on the same specimen using a 5 MHz and a 2.25 MHz

1 Trade Mark of Echo Ultrasound, Inc.
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resonant transducer, respectively. Notice, that the 5 M1z transducer actually caused more encrgy
to be present in the second specimen resonance (3.4 MHz) than the first (1.7 MHz). In compar-
ison, the 2.25 MHz transducer had most of its high frequency energy in the first specimen resonance

(1.7 MHz). Thus, AU results arc extremely sensitive to the transducer’s frequency response.

The major transducer used to produce the subsequent experimental results was a 2.25 M1z (V105)
broadband transducer with a half inch diameter active element. However, a couple of measure-
ments were made with similar (V166) transducers, containing a quarter inch diameter active cle-
ment. The half inch diamecter transducers were used to measure energy and attenuation, and the
quarter inch transducers were used to mecasure certain phase velocities and to determine the effect
of source size.

Couplant was applied both to the specimen and the transducer before placing them in contact.
Then the transducer and specimen were pressed together with uniformily distributed pressure and
then weights were applied. Two pound weights were used to apply pressure to the transducers.
For some experiments, such as phase velocity measurements, the transducers were not weighted and
the transducers were simply pressed by hand and moved slowly over the material surface. A
Proctor transducer (ref. 155) was used simply to gain an increased understanding on the cffect of

source size.

Data Acquisition

Signal observation and storage was performed using PC-DAS, a data acquisition system marketed
by General Rescarch Corporation to be used with the IBM-PC. PC-DAS utilizes a PCTR-160
A/D board and control software to provide flexible, easy, and high data rate signal capture. The
PCTR-160 allows sampling rates from 156 KHz up to 20 MHz in transient mode and sampling

rates of 40, 80, and 160 MHz in the time equivalent sampling mode which can easily be utilized
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with the AU arrangement. However for the frequency ranges generated with the AU system and

specimens, the 20 M1z sampling rate proved to be adequate.

The signal can be displayed so that the whole signal (4096 points) appears on screcn or in expanded
form so that a detailed view of 1/12th of the signal is displayed. The signal can then be frozen and
a gate which is movable in the display can be used to make exact time mcasurcments, since the
numerical value corresponding to the position of the gate in the time domain is displayed on screen
to the resolution of the digital data. This feature of the data analysis software was used to measure
phasc velocities by tracing the exact placement in the time domain of a phase point when the
transducers are moved (ie. d is changed). The value At was determined by tracing a phase point
on the CRT and Ad by measuring the displacement of the transducer on the specimen, then the

phase velocity was calculated
Vo = (Ad)/(A0)

As mentioned, this gate can also be used to select up to 512 points for spectral analysis which is
displayed on screcn, thus giving immediate information on the frequency content in a specific por-
tion of a signal. Again a keyboard controlled marker may be used on screen with screen displayed
numerical values to gain exact information on frequency content. Thus, as experiments are per-
formed quantitative information on both the time domain and frequency domain may be ascer-
tained. Software then allows the digital data and sampling parameters to be stored in a data file for

further analysis.

Software Analysis of AU Signal

In order to obtain more physically significant signal description parameters, signal analysis software

has been developed. The program uscd to generate results for this work is a third generation Lahcy
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Fortran version (ref. 131) of the program described in chapter 2. This program utilizes the same
theory and equations stated in that discussion. This version of the program allows for the calcu-
lation of the same parameters, utilizing the Ilartley transform for faster calculation of amplitudes

of frequency components.

Figure 25 shows a block diagram of data transfer to get various results and the use of batch files to

create data files in order to show how AU valucs vary with another paramcter (eg. azimuthal anglc).

First, data files must be converted to ASCII format, so that data can be read to plotting and mo-
ment analysis software. For purposes of example, let (file) stand for any group of data files created
using PCDAS and (###) stand for the incremented number representing one data file in the set.
If a number of files with the same data name (ie. file### .dat), but incremented numbers, need to
be converted, then a batch file can be created to convert files. This batch file can be created using
the Basic software program (conbat.bat). This automatically gives the file name of the batch file
the same name as the prefix for the data files and the file type (con). Thus, when the program
(convert.cxe) asks for the batch file: type-(file.con). Next, batch files can be created for Fortran files
by using the Basic program (forbat.bas). This yields a batch file named (file fat). Then another
Fortran program (mitt.exe) can be used to obtain voltage/time data and amplitude/frequency data,
and another Fortran program (mike2.exe) to obtain AU parameters for all data files and then store
them in a single file, which can be named by the user. The data files for the voltage/time and
amplitude/frequency data is ready for use with standard plotting packages. The output file from
(mike2.cxe) can be manipulated by another Fortran program to generate data sets for graphic
packages. For instance, the program (aupa.bas) reads each value for Al, A2, and two filtered Al
parameters, pairs them with the corresponding values of § and d to produce a number of data sets.
However, this program can only be used if data is taken in the proper order for the proper angles

() and distances (d). The following data sets are produced:

Al versus azimuthal angle (at d = | and d = 2 inches)
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Attenuatjon of Al versus azimuthal angle between 1 and 2 inches

A2 versus azimuthal angle (at d = 1 and d = 2 inches)

Al(f1f2) versus azunuthal angle (at ¢ =1 and d = 2 inchces)
Attenuation of A1(f1,f2) versus azimuthal angle between 1 and 2 inches
AL(f3,f4) versus azimuthal angle (at d =1 and d = 2 inches)
Attenuation of A1(f3,f4) versus azimuthal angle between | and 2 inches

The {1 and f2 are simply the low and high frequencies for the first filter, while {3 and 4 are the low
and high frequencies, respectively, for the second filter. Thesc data scts may then be graphed using
plotting routines.

Graphs of these results for a number of plates are included in chapter 4. These results along with
the phase velocity measurements offer a great deal of physical insight on the nature of wave prop-
agation taking placc during the AU method.  Additionally, advances in analytical ultrasonics
(instrumentation and calculation schemes) may allow angular variations of pertinent AU parame-
ters, such as thesc, to be obtained quickly, in order to determine increased information on the

condition of composite materials being used in service conditions.

Experiments

Although a myriad of experiments have been performed in pursuit of a better understanding of the
AU method, discussion will be limited to a simple set of experiments performed to understand and

clucidate the basic mechanics associated with the AU method. The experiments involve using
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aluminum plates and a number of Gr/Ep plates. This experimental work endeavored to systemat-
jcally examine the general character of wave propagation occurring when the AU method is per-
formed. These experiments were performed using the experimental arrangement described

previously. The following specimens were utilized:
.0625 inch thick aluminum plate (6061-T6)
.125 inch thick aluminum plate (6061-T6)
An aluminum plate tapered from .0625 section to .125 section (see figure 26) (6061-T6)
24-ply unidirectional Gr/Ep plate (AS-4 Gr/Pr 288)
12-ply unidirectional Gr/Ep plate (AS-4 Gr/Pr 288)

Experiments were performed to produce both qualitative and quantitative information on the AU
method. Some experiments involved performing very mechanized steps to obtain specific meas-
urements, while others involved less rigorous steps. In general, a different set of experiments were
performed for each specimen, however a number of experiments were performed on more than one
specimen. Thus, a description of general experimental procedures is given first and then each
specimen is considered separately, with more detailed descriptions of experiments performed only

on that specimen.

General Procedures

The basic quantities measured in this set of experiments are Al, Al(filtered), A2, attenuation, and

estimated phase and group velocities.
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The measurement of AU parameters and attenuation is quite simple and is the basis of the AU
method. The standard AU configuration described above was utilized, with transducers oriented
normal to the plate. In order to obtain the attenuation measurements, the AU method was per-
formed at both d = 1 and d = 2 inches. It should be kept in mind that the attenuation measurement
was done only for material intervals between [ and 2 inches from the sending transducer in this set
of experiments and is likely to be quite different for another choice of d's, even though their dif-
ference may still be | inch. IFor the composite plates, these measurements were made at azituthal
angles of 0, 15, 30, 45, 60, 75, and 90 degrees. Phase velocity is measured for a single frequency
content to determine the phase velocity for that particular mode. 'This procedure involved simply
tracing the displacement of a phase point (usually a peak in harmonic function of single frequency),
for a given displacement of transducers on the plate. The measurement of phase velocitics was
more difficult than measuring AU paramcters and required a more artful experimental technique
(trial and error, inorder to fully separate different harmonic modes). In certain cases, the signal
content did not facilitate the mcasurement of a phase velocity for a particular mode. Specifically,
in the composite plates , certain frequencics were of such a small amplitude for certain azimuthal
angles that phase velocity measurements were impossible.  The measurement of phase velocities
were again made for different frequency contents at various azimuthal angles, however, in certain
cases, the phasc velocilics varied from measurement to measurcment. Even more difficult was the
mcasurement of group velocity for a particular mode or frequency content. Often, these valucs
turned out to be impossible to measure exactly, however, estimates were made to provide qualita-
tive results about AU wave propagation. Estimates of the group velocity entailed defining a mod-
ulating hump for a certain frequency content and noting how far it translated in the time domain
for a change in d. Thus, the measurement of group velocity, simply involves the motion of the

wave modulating term.

The AU paramcters and the attenuation measurements were made with the conventional AU
configuration. For all plates, besides the tapered aluminum plate, the sending transducer was placed

at the center of the plate. AU measurements for any direction were made for d=1 and d=2
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inches. For the aluminum plates, the AU measurement were only performed in one direction. For
the composite plates, fudiciary lines were drawn for azimuthal angles of 0, 15, 30, 45, 60, 75, and
90. These were drawn from the center of the plate, where the sending transducer was positioned.
The receiving transducer was initially placed at 8 = 0 degrees and d = 1 inches. Then, the receiving
transducer was moved to d = 2 inches. Next, the receiving transducer was moved to 0 = 15 degrees
and d= 1 inch. The sending transducer was kept at the same spot (center of the platc), however
it was rotated 15 degrecs, as was the receiving transducer. This was done to climinate any effect
of unsymmetric or misaligned transducer elements. Next, the receiving transducer was moved to
d=2 inches. The same procedure was continued, ending with 8 =90 and d =2 inches. All

measurements were made with the weights on the transducers.

Specific Experiments

This section will simply catalogue the particular experiments performed on each specimen. The
experimental procedures described above will only be referenced and will not be described in detail

again.

Aluminum Plate (.0625 inches thick)

Aluminum plates were utilized to obtain basic information on the nature of wave propagation oc-
curring in plates when the AU method is performed. As a first step, the aluminum plates offered
a more simple situation than the composite material because of the readily available material

properties and their nomially isotropic behavior.

First, a basic AU measurement at one inch was performed to determine the components present
in the signal. Then the procedure to obtain the AU parameters and the attenuation factors was

performed. Phase velocity and group velocity measurements were made for each frequency
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conponent in the signal that was of sufficient amplitude. A simple pulse echo test was also per-

formed using the .25 inch diameter sending transducer.

Several additional experiments were performed to determine the effect of changing certain variables.
First, the AU method was performed with the two .25 inch diameter transducers to determine the
effect of transducer size, and, one test was performed with a 5 MHz set of transducers to determine
the effect of transducer resonance frequency. Also, a simple test was performed using the Proctor
transducer. Finally, a test was performed to determine the effect of tilting the sending transducer
slightly. Basically, this was done by applying an extra thick portion of couplant under the sending
transducer and then tilting the transducer to approximately 10 degrees to determine the effect on
the frequency content of the signal. The tilt was oriented away from the receiving transducer (see

figure 26).

Aluniinum Plate (.125 inches thick)

Experiments similar to those performed on the .0625 inch thick plate were performed on a thicker
(.125 inch thick) plate. These experiments were done in order to determine the effect of specimen

thickncés on AU results.

Composite Plate (24-ply unidirectional Gr|Ep)

A number of measurement were made on a 24-ply unidirectional Gr/Ep plate. The composite plate

allowed for the investigation of the effect material variation with azimuthal angle has on AU results.

First, basic AU measurements were made to determine what frequencies were present in the signal.
Next, the procedure for determining AU parameters and attenuation factors was carried out for each

azimuthal angle. Then, the phase velocities of various frequency components were measured for
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Figure 26. Experiment to determine the effect of transducer tilt
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cach azimuthal angle possible; also, group velocities were measured when possible. A basic pulse
echo experiment was also performed. Finally, basic tests were performed to determine the effects

of using .5 inch diameter transducers and 5§ MHz transducers.

Composite Plate (12-ply unidirectional Gr|Ep)

In order to determine the effect of plate thickness with composite plates, a 12-ply unidirectional
plate of the same material used to make the 24-ply plate was investigated. The same tests were

performed on both the 12-ply plate and the 24-ply plate.

Tapered Aluminum Plate

A tapered aluminum plate (fig.27) was investigated to gain more insight into the physics of how
waves detected with AU measurements are created. This type of experimental work may also be

useful in developing a basic understanding of the AU method applied to complex structures.

First, AU signals were generated in each of the flat portions of the plate, well away from the tapered
region. This was done to determine what frequencies were being generated in each region. Next,
the sending transducer was placed in the .0625 inch thick section, an inch from the taper, and the
receiving transducer was placed in the .125 inch thick section, 6 inches from the sending transducer.
An AU signal was then captured in this configuration. Next, the same procedure was performed
with the sending transducer in the .125 thick section and the receiving transducer in the .0625 inch

thick section.
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- TAPERED ALUMINUM PLATE DESIGN

1257 0625 ”

Each section of the plate is 4 inches

The plate is 12 inches wide

Figure 27. Design of tapered aluminum plate
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Experimental Results

The cxperimental procedure described in the previous chapter revealed definite trends and a number

of results useful for understanding the AU method. This chapter will present these results.

General Comments

AU signals generated in this set of experiments showed wavetrains with components at very definite
frequencies for a given plate. Observing the amplitude/frequency curves generated by these exper-
iments illustrates this with sharp peaks at definite frequencies (e.g. see figure 38). TFurthermore,
these components are separable in the wavetrain by separating the transducers further apart, as a
result of dispersion.  This results in harmonic components which show very definite peaks and
troughs (harmonic behavior) and which translate across the time domain if the receiving transducer
is translated relative the sending transducer. However, in some instances the amplitudce of a given
phasc point will change quickly due to a small change in distance, this is thought to be an effect
of a slow group velocity modulation. Figure 28 shows an AU signal obtained with the transducers

on a composite plate and o = 1.0 inches.. Notice that there seems to be a periodic modulation of
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the signal. Figure 29 shows a signal obtained from the same plate with d = 2.0 inches. This shows
how the modulation and phase points shift. This can make the measurcment of phase velocity
more tricky. Additionally, notice that the shape of the modulation changes.

Basically, results indicate that frequency components are present in the signal, that they separate in
the time domain when the transducers are separated, and that phase points can in some instances
be picked out to make phase velocity measurements. It is observed that some phase velocity
(motion in the time domain for motion in the spatial domain) is associated with these motions and

that, as mentioned, for certain modes, a group velocity is modulating the harmonic components.

For the composite plates, it is evident that the same frequencics are present at all azimuthal angles,
but that the proportions of each frequency content changes drastically with azimuthal angle. In
fact, for some azimuthal angles, certain frequency components were of such small magnitude that
velocity measurements were not possible. Furthermore, it is quite obvious that the energy content
in the signal is heavily influenced by changes in azimuthal angle, as is the position of certain com-
ponents of the wave train in the time domain. In order to quantify the change of wave motion
with azimuthal angle on composite plates, the behavior of AU parameters and wave velocities of

a certain harmonic component of the signal were monitored as a function of azimuthal angle.

Aluminum Plate (.0625 inches thick)

The signals and corresponding spectrums generated by performing the AU method on the 0625
inch thick aluminum plate at d = | and d = 2 inches are shown in figs. 30 and 31. Figure 32 shows
an expanded view of the early portion of the signal obtained by performing the AU with d =l inch.
From this plot it is evident that certain phase points may be identified for a given harmonic com-

ponent in the signal.

Notice that the major components in the signal were at .7, 1.0, and 2.0 MHz. The very early part

of the signal consisted of a small amplitude .7 MHz signal content. This part of the signal was of
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Figure 28. AU signal obtained from Gr/Ep specimen (d=1 inch)
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Figure 29. AU signal obtained from Gr/Ep specimen (d =2 inch)
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Figure 31.
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a)V/T and b)A/F, plots for aluminum plate (d =2") (.0625” thick)
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very short duration (5 usecs.), which is on the order of the pulse duration. Additionally, the .7
M1z portion of the signal was of relatively low amplitude. The following parts of the signal con-
sists of the 1 and 2 MIlz components. These portions of the signal were of considerably higher
amplitude and persisted much longer in the wave train. In figures 30 and 31, the large contribution
of the 1 and 2 MIlIz components is evidenced by the large amplitudc peaks. Thus, the frequency
spectrum shows larger peaks at 1 and 2 MIIz and the resulting cnergy content or filtered AU pa-
rameters are larger. In comparing the .7 Mlilz component to the 1 and 2 Mllz compoucnts, sce
(fig. 30 and fig. 31 (chp. 4)), it should be noted that the 2 MI1z showed a large sharp modulation
hump that travelled at a much slower velocity than phase points, compared 10 the 1 MIlz which
did not show as definite of a modulation hump and the .7 MIiz which showed no dispersive effects.
Another point to be noted is that the 2 MIlz signal content dominated the end portion of the wave
train, indicating a slow group velocity. Note, also that the 1 MHz peak in the amplitude/frequency
is of a wider frequency band and is skewed to the right. A modest indication in the spectrum also
appears at 2.3 MHz. Figure 33 shows the relative energy content in each of the frequency ranges
for the signal at d =1 and d = 2 inches. This figure also shows the attenuation of each mode be-
tween 1 and 2 inches. 'l‘ﬂhc 2 and the 1 MHz components of the signal were of fairly comparablc
amplitude at 1 inch, but the 2 MHz component was significantly more attenuated than the 1 MIlz
content. One problem with these measurements is that the long wavetrain associated with the sig-
nal was longer than the data recording capabilities of the system and the end part of the wavetrain
interacted with edge reflections. The .7 MHz portion of the signal separated from the rest of the

wave train (due to higher group velocity) and appeared less attenuated.

Tinally, figurc 37 displays a chart of the phase velocity for each frequency component of wave
motion. Phase velocity measurements were not possible for the 2.3 Mz signal content because
these components never really separated from the other frequency components which were of
higher amplitude. Notice that the 2 and 1 Mllz components had substantially higher phase ve-
locities than the .7 MIIz component. It should be noted that the phase velocity for the 1 Mliz

component was found to be slightly greater at the end of the signal than at the beginning. In gen-
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AU PARAMETERS

.0625 inch thick aluminum plate

1 2 2 INCH
VARIABLE —
INCH INCH | 4

INCH
A1 A6E-1 | .49E-2 31
A2 78 59 76
A1(.5,.8) A3E-3 | .68E-4 52
A1(.8,1.2) 72E-2 | .40E-2 56
A1(1.8,2.2) 85E-2 | .83E-3 10

Figure 33. AU parameters for .0625 inch thick aluminum plate
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eral, phase velocities showed variation as a function of position in the wavetrain. Measurements
were made on the earliest part of the wavetrain, where the mode on which the phase velocity was
being made, was separated from other modes enough, so that definite phase points for that mode

could be traced.

Group velocity measurements were difficult to make for the aluminum plate. However, it was
noted that the .7 MHz signal content moved at a group velocity similar to its phase velocity. In
contrast, it was estimated that the 1 MHz signal content had a group velocity of roughly 60,000
inches per sec. and that the 2 MHz signal content was roughly 65,000 inches per sec., however the
end portion of the signal was dominated by a 2 MHz signal content of a slow group velocity. It
should be noted that these measurements were made for components of the signal early in the
wavetrain. Moreover, another point of interest is the rather large value of the measured phase ve-
locity compared to the rather small value of estimated group velocity for the 1 and 2 Mllz com-
ponents. In general, the 2 MHz signal content showed a greater phase velocity than the 1 Mllz,

but contained a slow group velocity portion at the end of the wavetrain.

Tilting the sending transducer, so that its face was not parallel to the face of the plate, resulted in
an increase in the value of the frequencies for the peaks in the spectrum. Additionally, changing
the transducer size from .5 to .25 inches in diameter had little effect on the 1, 2, and 2.3 Mz
components, but caused the .7 MHz (early arriving part of the wavetrain) to change to .5 MIlz.
Lastly, the Proctor transducer also caused peaks in the spectrum from the signal to occur at 1,2,

and 2.3 MHz. Thus these frequencies are excited by a number of different transducers.

Aluminum (.125 inches thick)

Figure 35 shows the voltage/time and amplitude/frequency plots for the .125 inch thick plate. The

signal content consisted of .35, .5, 1.0 and 1.15 MHz components.
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PHASE VELOCITY MEASUREMENTS
.0625 inch thick aluminum plate

FREQUENCY PHASE
VELOCITY
.7 MHz 210,000
1.0 MHz | 620,000
2.0 MHz 1,000,000 -+

Phase velocity measurements are in (inches per second)

Figure 34. Phase velocity measurements for .0625 inch thick aluminum plate
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Figure 35. a)V/T and b)A/F, plots for .125” thick aluminum plate
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In gencral, the signal consisted of a spectrum with major peaks at frequency values half that of the
.0625 inch thick plate. In fact, the signal was very similar to that of the signal obtained on the .0625
inch thick plate, except that the frequency of each mode identified in the signature was half. The
comparison of the AU values for these components can be seen in figure 36. Notice that the |
MHz component is the highest energy content part of the signal for d =1 inch and is the most
heavily attenuated part of the signal. In fact, the 1 MHz signal content is roughly twice as atten-

vated as the .5 M1z signal content.

Figure 37 displays the values of the phase velocities for the .125 inch thick plate. The phase velocity
for the 1 Mz mode on .125 inch thick plate is the same as the 2 MHz mode on the .0625 inch
thick plate, and so forth for the other modes. Thus, it appears that phase velocities were similar

on the .125 inch plate and the .0625 inch plate.

Group velocity measurements were much less than the phase velocity measurements for the .5 and

1.0 MHz components, a result that is similar to that obtained for the .0625 inch thick plate.

24 Ply Gr|Ep Plate ( Unidirectional)

Although a number of frequency components existed in the 24-ply plate, the dominant frequency
components present at each azimuthal angle where at .23, .66, and 1.1 MHz. Each of these com-
ponents varied in a unique manner with azimuthal angle. Figure 38 shows a representative signal
and amplitude/frequency plot obtained with d = 1 inches and an azimuthal angle of 0 degrees.

This signal is very representative of the signal in the zero degree direction for Gr/Ep plates. The
signal shows a definite high amplitude part of the signal at an early arrival time (predominately .66
MHz), followed by a small portion of predominately 1.1 MIIz signal content, and a late part of the
signal dominated by .23 MHz signal content. Each of these frequency peaks is labeled in the

amplitude/frequency plot (also in figure 38). The amplitude/frequency plot shows that higher fre-
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AU PARAMETERS

125 inch thick aluminum plate

1 2 2 INCH
VARIABLE —
INCH INCH 1

INCH
A1 12E-1 |.55E-2 | .45
A2 .50 41 82
A1(.3,.4) 19E-3 |.18E-3 | .95
A1(.4,.6) 16E-2 |.14E-2 | .88
A1(.8,1.2) 81E-2 [.32E-2 | .40

Figure 36. AU parameters for .125 inch thick aluminum plate
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PHASE VELOCITY MEASUREMENTS
1256 Inch thick aluminum plate

FREQUENCY PHASE
VELOCITY
.36 MHz 216,000
.50 MHz 620,000
1.0 MHz 1,600,000 +

Phase velocity measurements are In (inches per second)

Figure 37. Phase velocities for .125 inch thick aluminum plate
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quency peaks were in the signal for the 0 degree direction and d = 1 inch, but most other meas-

urements do not show these frequency peaks.

The signal obtained at d = 2 inches showed the same signal content, but the early portion of the
signal was greatly distorted. At 15 degrecs the 1.1 MIIz signal content was of higher relative mag-
nitude compared to the other components than at other azimuthal angles. This type of behavior
has been scen in previous results (refs. 9 and 99). Moving the transducer to d = 2 inches at 15 de-
grees resulted in a great deal of attenuation in the AU signal. As the azimuthal angle was increased,
the .23 Mz signal content began to dominate the signal. In fact, at higher angles the other com-
ponents became very hard and in some cases impossible to pick out of the signal. The effect of o

and azimuthal angle on AU results can be scen in figures 39-45.

The plots of Al and the attenuation of Al versus azimuthal angle (figure 39) shows how the encrgy
content and attenuation were affected by changes in azimuthal angle. Notice the AU signal was
of high encrgy for 0 degrees and dropped off to a fairly constant value. This behavior is very similar
to that shown for the Gr/Ep unidirectional shown in chapter 2 (fig. 13).  Additionally, the highest

attenuation of the AU signal was at 15 and 90 degrees.

The plot of A2 versus azimuthal angle (figurc 40) shows that the high frequency content of the
signal drops off at roughly 45 degrees to a value almost half that scen at carly angles. This is due
to the .23 MlIz signal content becoming more dominant than the higher frequency content for

higher angles.

For the .23 Mllz signal content, A1(.15.32) and AI1(.15.32)-ATTEN. were plotted versus
azimuthal angle (figure 41). T'or d = | inches the A1(.15,.32) is slightly high in the 0 degree direc-
tion and very high for 90 degrees. In fact, the AU signal in the 90 degree direction showed an al-
most perfect sine wave pattern at .23 MIz throughout the wave train, with very little modulation

(sce figure 42). Tleavy attenuation of the .23 MIIz signal content occurred at 90 degrees and as a
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Figure 39. a)Al and b)AI-ATTEN. versus azimuthal angle for Gr/Ep plate
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Figure 40. A2 versus azimuthal angle for Gr/Ep plate
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result the A1(.15,.32) for d = 2 inches is rather flat and does not curve back up as does the curve

for d =1 inches.

Figure 43 shows how A1(.55,75) for d=1 and d = 2 inches and A1(.55,.75)-ATTEN. vary with
azimuthal angle. At low angles A1(.55,.75) varies much like Al, since the .66 MIH1z content dom-
inated the signal. However, at high angles the .66 MHz signal content was not very strong and
hence A1(.55,.75) fell to practically zero. The attenuation for A1(.55,.75) was relatively low for 0

degrees, peaked at 15 degrees, and reached an intermediate value at higher angles.

A1(.9,1.3) for d=1 and d=2 inches, along with the calculated attenuation parameter versus
azimuthal angle arc shown in figure 44. The A1(.9,1.3) for d = 1 inch shows a high value at 0 de-
grees and drops off less slowly at 15 degrees compared to A1(.55,.75), but then falls off at 30 degrees.
The 1.1 MIIz signal content or A1(.9,1.3) was attcnuated very little in the 0 degree direction, but

showed high attenuation between 15 and 30 degrees.

Plots demonstrating how phase velocities varied with azimuthal angle are displayed in figure 45.
The first plot (a) shows the varation of phase velocity for the .23 MHz signal content with
azimuthal angle. The .23 MHz signal content had a phase velocity which varied fairly smoothly
from a value of 277,000 inches per second at 0 degrees to 156,000 inches per sccond at 90 degrees.
‘The .66 M1z signal content showed a value of 450,000 inches per second for the phase velocity at
0 degrees and dropped to 113,000 at 90 degrees, showing a quick drop off between 15 and 30 de-
grees. The 1.1 MHz signal content had a phase velocity of 800,000 inches per second at 0 degrees
and a phase velocity of 700,000 inches per second at 15 degrees, but was of such low amplitude at
higher angles that phase velocity measurements were not possible. Notice that the phase velocitics
for the 1.1 MIz signal content is roughly twice that of the phase velocity for the .66 MHz (half the

frequency value) signal content. This same type of behavior was observed for the aluminum plates.

In general, the 24-ply composite plate produced signals with frequency content at .27, .66, and 1.1

MIz. However, the AU signal did possess signal content in other frequency ranges. In fact, the
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Figure 41. A1(.15,.32) versus azimuthal angle for Gr/Ep plate
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Figure 43. AI1(.55,.75) versus azimuthal angle for Gr/Ep plate
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Figure d44. A1(.9,1.3) versus azimuthal angle for Gr/Ep plate
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Figure 45.
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AU signals from the composite plate resulted in more peaks and wider band widths for those peaks,
compared to the aluminum plate. The AU signals from the composite plate, except for the 0 degree
direction, did not show the strong modulated pulse shape that was observed for the AU signals

obtained from the aluminum plates.

12 Ply Gr/Ep Plate (Unidirectional)

The 12-ply unidirectional specimen produced AU results with the predominant frequency content
at 46, 1.2, and 2.2 MHz. Note these values are twice that seen on the 24-ply specimen. lence,
the composite plates showed the same inverse dependence of frequency on thickness as the alumi-
num plate, as would be expected with plate modes of wave propagation. Each of the frequency
components for the 12-ply plate showed similar behavior to the corresponding frequency compo-
nent on the 24-ply plate, with some slight exceptions. In order to glcan more exact information
on how the AU signal varied with azimuthal angle, figures 46-51 show how AU parameters varied

with azimuthal angle on the 12-ply plate.

The plot of Al versus azimuthal angle for the 12-ply laminate is shown in figure 46. Again the
AU signal showed the greatest energy content in the 0 degree direction with the signal dropping off
quicker for d = 2 inches than for d =1 inch. Also, the Al value jumped to a rather a high value
for d =1 inch at 90 degrees. This jump in Al at 90 degrees was even more rapid than what was
seen in the 24-ply plate. There are probably a number of factors contributing to the jump in the
energy of this mode at 90 degrees. It should also be noted that the attenuation was greatest at be-

tween 15 and 30 degrees and at 90 degrees.

Figure 47 displays the plots of A2 versus azimuthal angle. For d =1 inch, the plot showed a peak
at 15 degrees. This type of behavior is similar to that seen in the thin plates discussed in chapter

2 (figure 16).
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Figure 46. Al versus azimuthal angle for 12-ply Gr/Ep plate
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Figure 47. A2 versus azimuthal angle for Gr/Ep plate
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The plots of Al1(.25,.7) and Al(.25,.7)-Atten. (figurc 48) show how the energy of the .46 Mliz
signal content varied with azimuthal angle for d =1 inch and d = 2 inches. For d =1 inch, the
Al(.25,.7) parameter showed a definite high valuc at 90 degrees. Fairly high values of A1(.25,.7)
also existed at 0 degrees for both d=1 inch and d = 2 inches. The attenuation of the .46 Mz

signal content was very low for low azimuthal angles.

The variation of the 1.2 MHz signal content with azimuthal angle and distance can be seen in figure
49. This signal content showed a high energy content at low azimuthal angles and reached a very
low value after 45 degrees. The maximum attenuation was between 15 and 30 degrees. This shows
that most of the energy for the 1.2 MHz signal content is sent in the fiber direction and very little

is sent in the cross fiber direction.

Figure 50 displays plots which show how the 2.1 MHz signal content is affected by changes in
azimuthal angle and d. The major point is that the 2.1 MHz signal content is heavily directed into

the low angle directions and seems to attenuate rather quickly even in the low angle directions.

Figure 51 displays the variation of phase velocity for the two dominant modes in the AU signal.
The plot of phase velocity versus azimuthal angle for the .47 Mllz signal content’ descended
smoothly from a value of 385,000 inches per second to a value of 156,000 inches per second. The
plot fo; the 1.3 Mz signal content dropped from a very high value of 2,000,0000 inches per second
to a value of 120,000 inches per second inside of 45 degrees. Phase velocity measurements for the
1.3 MHz signal content were hard to make past 45 degrees because the signal was of such low
amplitude at these angles. The 2.1 MIz signal content showed an extremely high phase velocity

in the 0 degree direction and measurements were not possible at higher angles.
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Figure 48. AI1(.25,7) versus azimuthal angle for Gr/Ep plate
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Figure 49. A1(1.0,1.5) versus azimuthal angle for Gr/Ep plate
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Figure 50. A1(1.8,2.3) versus azimuthal angle for Gr/Ep plate
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Tapered Aluminum Plate

AU measurements performed on the tapered aluminum plate revealed some interesting results.
Figurcs 52-55 display amplitude/frequency plots obtained from the various measurements on the
tapered plate. Again these measurements where made with a large transducer separation distance
(d = 6 inches) and hence show results somewhat different than seen in earlier results (d=1 and

d = 2 inches).

Performing the AU technique on the thick (.125 inch thick) section with d = 6 inches revealed the
amplitude/frequency plot shown in figure 52. Note that the primary peak is at .5 MHz with another
major peak at 1.0 MHz. These arc the same major frequency components secn in the .125 inch
thick aluminum plate discussed previously. However, this spectrum does not possess as sharp or
as well defined peaks and additionally contains other small peaks at other frequencies. These effccts

are attributed to the extra distance between the sending and receiving transducers.

Figure 53 pictures the amplitude/frequency plot obtained by placing the sending transducer on the
125 inch section and the receiving transducer 6 inches away on the .0625 inch thick section. The
major result here is that the .5 MHz signal content is replaced by the 1.0 MI1z signal content as the
dominant frequency content and the appearance of the 2 MHz signal content at a magnitude higher

than what existed when the AU measurement was performed in just the .125 inch thick section.

Performing the AU method in the .0625 inch section revealed the aniplitudc/frequency plot in figure
54. This measurcment resulted in a sharp peak at | MIlz and very little other signal content in

other frequency ranges.

Finally, the AU measurement made with the sending transducer in the .0625 inch thick section and
the receiving transducer 6 inches away in the .125 inch thick section produced the
amplitude/frequency plot shown in figure 55. This plot reveals a strong 1 MHz peak and higher
proportional values for .3, .5, and 2 Mz peaks, especially, the .3 MHz peak, which was also of a
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relatively high value for the case where the sender and receiver are in reverse locations (figure 26).

A major point is the .5 M1z signal content not present in the AU measurcment for the thin section.

Overview of Experimental Data

The preceding results exemplify many of the basic features associated with the physics of the AU
technique. In particular, information has been presented on disturbance frequency content and on
wave velocitics and encrgy content for various frequency components. Moreover, the issuc of how
these variables are affected by changes in azimuthal angle has been displayed. Additionally, the
attenuation of the various frequency components for various measurements have been calculated

10 help understand the basic mechanics of AU wave propagation.

In the next chapter, the results from this chapter are compared to basic theoretical ideas that form
an elementary model of the AU method. This will include comparing frequency peaks seen in the
amplitude/frequency plots to frequencies for through-thickness-transverse resonance modes. Ad-
ditionally, this includes looking at plate wave dispersion curves and predicted plate wave phase ve-
locities. Plots of how variables change with azimuthal angle will also be compared with theoretical
predictions of how certain measurements should change with azimuthal angle. Comparisons are
both quantitative (based on numerical results) and qualitative (based on examining equations and

general trends).
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Physical Understanding

In this chapter a physical understanding of the AU method, based on comparing experimental data
with theory, is presented.  Most of the cxperimental data utilized is contained in the previous

chapter, however some comments relate to the literature review.

Theory of elasticity, I.amb wave theory, and TTTR provide the basis for the physical understanding
of the AU technique. Additionally, the contribution of encrgy flux deviation to AU results is noted.
Lamb wave theory and TTTR were both reviewed in chapter two, therefore comments in these
subjuct arcas concentrate on utilization of the theory for computer applications, as well as com-
parisons to AU cxperiments. Specifically, dispersion curves and TTTR calculations are used to
suggest which modes may be present at frequencies seen in the AU results, while phase velocity
calculations are used to identify which of the possible modes is actually showing up in AU results.
The clasticity solution is used simply to give an indication of what disturbances the piezoclectric
source might create. Thus, coverage of the elasticity solution consists of general equations, com-

puter results, and ramifications of how the elasticity solution may relate to AU results.

First, a very basic description of the physical problem is presented. This reitcrates how a number
of concepts forwarded in chapter 2 are related to the AU method. The discussion emphasizes how

clasticity, Lamb wave theory, and TTTR may be used to provide a basic understanding of AU re-
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sults. Next, each of the three basic concepts (elasticity, TTTR, and Lamb wave theory) used to
understand the AU method are covered separately. For cach subject, this entails the following four

steps:
Statement of the basic physical concepts and equations
Discussion of computer codes or solution technique
Presentation of the numerical results for material systems utilized in experimental results
Comparison of numerical results with experimental results

Finally, a general overview of the physical understanding of the AU method is forwarded. This

will include statements on other experimental results and qualitative comments on theory.

Physical Problem

A number of mechanical and electrical components affect the final AU signal used to characterize
a section of material. Understanding each of these components creates separate engineering prob-
lems, which may be solved using analysis of varying degrees of complexity. These problems arise

from such concerns as:
Characteristics of the pulse sent from the pulser
Transducer response to pulse (mechanical and electrical coupling)

Variation of response over transducer face
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Interaction of transducer disturbance with couplant and material surface

Basic mechanical excitation seen by material (Boundary Value Problem)

Local wave disturbances resulting from mechanical excitation

How plate wave motion develops and propagates to other transducer (how to model material)
How motion caused by plate wave propagation interacts with other transducer

How interaction of plate wave motion with the receiving transducer causes the received signal
How signal from receiving transducer is electrically altered by receiving instrumentation

Although these questions are all, in their own right, complicated and to some degree worthy of
separate research, some primary understanding of these issues helps provide insight to basic results
and helps determine possible assumptions for modelling purposes. More importantly, these con-
cerns determine where future research should be directed to develop yet more refined AU tech-
niques.  Specifically, understanding the full complexity of the situation, facilitates future
improvements of present simplified models and shows where difficulties exist in understanding ex-
perimental equipment, so that new equipment may be designed. For these reasons, some of the
issues above, although not totally accounted for, will be discussed briefly. Obviously, many as-

sumptions must be used to get a working model for this complex line of problems.

The first issue is how the pulse produced by the pulsing unit produces stress waves in the material.
The pulse sent to the sending transducer is not a perfect pulse, but a finite width pulse of siﬁusoidal
shape. However if the proper settings are utilized, the pulse can be reduced to a fairly sharp pulse
width. In any case, an imperfect pulse is sent to the sending transducer, so that the input from the
onset has a nonuniform spectral density, even before pulsing the sending transducer. Obviously,

this affects the spectral density of the output. The character of this pulse may be ascertained by
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consulting the user’s manual of the pulsing unit or experimentally analyzing the pulse using data
acquisition equipment. It is nccessary to ascertain the general frequency content of the input pulse
to make sure it is in the range of the transducer’s resonance frequency and in the range of fre-
quencies for AU results of interest. A further complication involves the manner in which the
electrical characteristics of this pulsc affect the piczoclectric element and the circuitry of the sending
transducers (ref. 133). A crucial concern is the frequency content and the duration of the resulting
transducer vibration. This issue was partially addressed in chapter 3 by considering the pulse echo
spectrum of a large aluminum block (fig. 24). Note that although the sending transducer is a
heavily damped, wide band transduccr, the spectral density of the excitation is very nonuniform for
the range of frequencies seen in AU results. In other words, certain frequencies seen in AU results
have higher energies of input than others by sizeable margins. An additional complication involves
how the actual transducer vibration as a result of the signal may not be uniform as a function of
position. For instance, the crystal may not be perfectly aligned or uniform. Ultimately, a very
carcful and exact characterization of a transducer should give the displacement field of the
transducer face as a function space and time for electrical input pulses. This most likely will involve
experimental characterization by methods such as optical interferometry. Certainly, the signal
gencrated by the receiving transducer is not a result of a perfectly uniform field, but an integrated
effect of a displacement field varying in time and space (ref. 152). To make matters even worse, the
displaccmqnt and stress of the piezoclectric element is transferred by couplant to the material sur-
face. This is a source of great problem for modeling purposes and presents practical problems in

regard to reproducibility of results.

Eventually, the material surface experiences a force varying with time and position. Furthermore,
this force disturbance most likely involves both shearing and normal forces, even in cases where the
sending transducer is a longitudinal mode transducer. However, most models for normal mode
transducers involve treating the transducer disturbance as a time varying distributed normal load

(ref. 99).
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Hence, although realizing the situation is definitely more complex, elasticity results for the stresses
caused by a point force on a half space are utilized to determine what type of disturbances might
be caused in a plate due to a transducer placed on the top surface. This approach neglects a number
of effects, but does allow some indication of how the energy for input stress waves may vary as a
function of angle off the normal and as a function of azimuthal angle. A few of the effects which

this neglects are:
Effect of bottom surface
Effect of pulse shape or frequency gontent of input
Effect of load being distributed nonuniformly over a finite area
Effect of shearing forces which may be generated

However, using a point normal force load, still allows a comparison of what effects the variation
of material properties with azimuthal angle might have on how certain wave motions vary with
azimuthal angle. Moreover, the normal mode of input is the dominant mode of input for this ex-
perimental arrangement. This provides a good qualitative picture of the situation and provides a
crude tool for quantitative modeling efforts. Also, for the case of an isotropic plate the problem
of distributed loading is considered, in a qualitative manner, to yield an indication of how

transducer size may affect results.

Next, consideration is shifted to how local disturbances created by the transducer may travel and
interact. More specifically, the focus is on characteristics of waves traveling normal to the plate
surface and to which wave motions would satisfy boundary conditions on the top and bottom
surfaces by through the thickness transverse resonance. The following are reasons for considering

the TTTR case:
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The greatest input is through the thickness or just off at small angles (8’s), so characteristics

of these waves are indicative of waves causing AU results

For higher order modes (that are TTTR modes for 6 = 0), even for a range of low angles of

8, the frequency is still near that of TTTR - this is central to understanding AU results

Results indicate that frequencies measured in AU results correlate to frequencies for TTTR

The main output for TTTR analysis are:

Displacements associated with wave travel for bulk waves through the thickness of the plate
(specifically the variation of displacement for a shear wave motion with azimuthal angle for a

composite plate)

Frequencies for TTTR modes

Waves propagating slightly off the normal will have many characteristics that are just slightly dif-
ferent than the TTTR modes. The reasons for this are elucidated when consideration is moved to
the Lamb wave equations. Hence, one purpose of looking at TTTR is to get an indication of what
characteristics might be present for modes that are included in Lamb wave analysis and to under-

stand these modes better.

The boundary value problem for waves traveling in a plate are described by Lamb wave equations.
The derivation and basic approach to solving these equations were discussed in chapter 2. Obvi-
ously, since the AU method has becn performed on a plate, equations describing wave motion for
a plate are relevant to the physical problem of AU propagation in aluminum and composite plates.
Moreover, many experimentalists have noted that characteristics of disturbances seen in AU results

resemble that of Lamb waves (ref. 9, 13, and 95).
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Since the Lamb wave equations are physically representative of the AU problem, their solutions
have been programmed. Appendices C, D, and [ contain 3 programs which calculate Lamb wave
results for the three separate cases of an isotropic plate, a unidirectional composite plate (0 and 90
degree directions), and a unidirectional composite plate (any gencral direction). Two additional
appendices provide information on how the programs may be improved to yield a more general
code. Appendix G lists a program which solves the Christoffcl equation for a general direction; this
is essential to using the method of uncoupled solutions. Next, a description is given of how the
method of uncoupled solutions may be combined with present codes to arrive at a more general,

easy to use solution code for Lamb wave analysis.

The strategy of the computer program involved solving the dispersion equation and using other
equations relating the physical parameters of the plate wave problem to each other. An cendless
combination of plots showing the relationship between various variables are possible.  However,

compute-r plots are given only for the following results:
Dispersion curves
Velocities versus frequency
Displacements versus frequency

The purpose of these results is to identify what modes of wave propagation are present in AU re-

sults. Also, plots are provided to compare Lamb wave behavior at different azimuthal angles.

Signal Reception

Another important issue is the manner in which the receiving transducer integrates the disturbance
over its face to produce an output signal. To obtain an understanding of this situation consider-

ation must be given to what type of transducer is utilized. For instance, if a longitudinal mode
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transducer is utilized, concern should be given to 1. Since longitudinal transducers were used in

AU experiments, the calculation of u is of interest in deriving theoretical comparisons.

Finally, the signal from the receiving transducer is operated on by the transfer function associated
with the amplifier, attenuator, and filter. The effects of this are important in developing a stand-
ardized method where the amplitude has an absolute value independent of instrumentation. Un-
fortunately, the modeling of other components is such that this is not yet attainable. In any case,
it is important to make sure that the transfer function for this section of electronics does not filter

out frequencies of interest or does not preferentially amplify certain frequency components.

Elasticity Solutions

This section chronicles solutions to the the elasticity problem for normal loads placed on an infinite
half space to approximate what stresses a similar load would cause on a plate of thickness 2b. This
shows how stresses vary relative to the angle of inclination from the source, hence paving the way
for determining how the input disturbance may cause more energy to be channeled into certain
Lamb wave modes relative to others, and moreover how drastically material anisotropy may affect

these results.

These solutions are for a single sagittal plane and the loading is assumed to be uniform as a function
of the direction perpendicular to the sagittal plane. For the anisotropic case, this leads to a difficulty
in interpreting results, because the load is distributed infinitely in the perpendicular direction,
causing the calculated stress in the direction perpendicular to the free surface to be different de-
pending on which azimuthal direction is considered. Hence, in these results the magnitudes of the
stresses are normalized to the value for the through thickness direction. The purpose of these re-

sults is to provide some indication of how the energy for Lamb waves varies due to the angle 6
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associated with the P-wave input. Thus, the point here is to use this solution to approximate the
magnitude of the stress waves impinging on the bottom surface of the plate, for various angles ¢
and relating the angle 8 and the magnitude ot the stress to the angle 0, for the P-wave, and hence

to the magnitude for the Lamb wave related to that 05,

Point Load on an Isotropic Plate

The basic notation and gcometry for the problem of a point load on a semi-infinite half space is
shown in figure 56. The dotted line corresponds to the surface where stresses are calculated to ap-
proximate the magnitude of stress waves impinging on the bottom surface of a plate. Once this
relative value is found the solution technique is be shified to Lamb wave equations. This portion
of the solution serves to provide an exact value for the undetermined coefficient which multiplies
the displacement values found using the classical Lamb wave solution.

A simple solution exists for the stress ficld caused by this point load. In polar coordinates, this

solution is given by the following formula:

p cos(8)
27

g, = r

r

Now, if we consider what stress this causes at positions corresponding to a plate thickness b, this

leads to the following formula:

P cos’(0)
T 20

c,=2

Figure 57 shows how o, varics with 6. The angle 8 relates to the input angle 05, the input angle for
a P-wave. This may thcn be related to the frequency for a given mode by using the basic dispersion

relations:

w =fi§)
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Figure 56. Definition of coordinate system and geometry for point load
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and the following equations:

2+ & = (@)

03 = tan—l(—g-

Hence, relations can be made between the input and the resulting character of Lamb waves which

may be excited. This connection will be discussed later in the next chapter with regard to modeling.

Isotropic Plate- Distributed Load

Figure 58 displays the geometry and notation utilized in the solution of a isotropic half space with
a distributed load placed on the top surface (reference 154). This causes a uniform compressive

load:
p=—24«x
where

1
(2n)

A= q

Obviously, this causes the stress to be less for a greater distance correlating to the distance for plate
thickness 26. Also, this value is lower for greater angles of inclination to the area covered by the

distributed loading.
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Point Loading on an Anisotropic Plate

The equations describing the stresses resulting from a point Joad on an anisotropic half space are
much more complex than those describing stresses caused by a point load on an isotropic half
space. Results of these equations indicate a large variance in how stresses vary for different orien-
tations on the top surface plane (or different azimuthal angles for for the plate constructed from
collapsing the half space to a plate). Thus, a normal input results in vastly different amounts of
stress and hence encrgy being transferred in different directions, due to variation of material prop-
erties.  Specifically, this section will forward Lekhnitskii’s solution for point loading on an
anisotropic half space. The strong dependence azimuthal angle has on how stress varies with angle
from the normal to top plane should be noted. In general, stresses tend to be much greater at angles
off the normal for azimuthal angles relating to high matcrial moduli. This would contribute to the

higher energy content for waves travelling in these directions.

A large system of equations must be solved to arrive at an answer to the stresses caused by point
loading on an anisotropic half space. Hence, this section will present the solution to this problem
utilizing Lekhnitskii’s notation (ref. 151) and state only the most relelevant equations. A more
detailed review of the theory used to arrive at these equations may be found in the above reference

by Lekhnitskii.

The first relevant equation involved in the solution to this problem is the general 6th degree alge-

braic characteristic equation for solving anisotropic elasticity problems:
Liwh) — (=0

where

b= 8" = 2814’ + (251 + See)u® — 28y + Sy

b=Ssu’ = (814 + Sseu® + (Sasm + Saedu — Sy
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3
b= Sssi” = 2asit + Se6

Using this the additional parameters may be defined:

= 5{ny)
E [2(#1)
- _ 5(iy)
2 Iz(}lz)
- _ 5(113)
3 ly(13)

In polar coordinates, the solution to this problem is:

6, = — 2= Re(i| A(AD,(0) + BDy(0) + A3CD3(0))

£y = — o Re(i] AU AE(0) + 2,BE(0) + CE5(60))

rz
where

A=py—py + Apda(py = m3) + A A3(ua_p)

A = (u3dahs — 1)

B=(uy — n3h43)

C= A3t — mtd)

D,(8) = (cos(0) + py sin(0))” /( sin(6) — z, cos(0)

Dy(6) = (cos(6) + uy sin(0))/( sin(6) — 415 cos(8))
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Figure 59. Definition of coordinate system for anisotropic case
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D3(0) = (cos(8) + u3 sin(0))*/( sin(9) — p3 cos(@))
E,(0) = (cos(0) + u; sin(@))/(sin(0) — iy cos())
E5(0) = ( cos(0) + s, sin(@))/( sin(@) — uy cos(f))

F5(0) = (cos(0) + 3 sin(0))/( sin(0) — p3 cos(0))

If the casc of orthotropy is considered the equations are greatly simplified and can be expressed

as:

P 5

o,=— 7 (4 + 1)(S118,,)" cos 8/(rL(0))
where
I . 4 . 2 2 4
(0) = Syq sin"6 + (25, + Sge) sin"0 cos 6 + S5, cos 0
and , and u, are the roots of the equation

4 2
S”u - (2512 + 566)u + 822 =0
Note that in this notation S, are the compliance values and the 1-direction corresponds to the di-

rection along the length of the plate. Thus, the values used in the expression depend on azimuthal

angle and hence the stress state varies as a function of azimuthal angle.

Two programs were written to calculate how the stresses vary as a function of 8 for different ma-
tenial directions. The first, (ORIN.FOR), calculates how o, varies as a function of ¢ in both the
fiber direction and the cross fiber direction (see figure 60 for results). The second, (GEIN.FOR),
will provide the same results from above for any direction. In these results, the values for the

stresses have all been normalized to the value in the through-the-thickness direction (0 = 0). The
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code for ORIN.FOR is in appendix A and the code for GEIN.FOR is in appendix B. The calcu-

lations for these programs follow straight from the equations stated above.

In example, the dependence of o, on 8, for the cases where the fiber direction and perpendicular to
the fiber direction define the planes to be considered, are shown in figure 60. The major difference
in the two curves is the rather quick drop in o, when the wave is sent in the cross fiber direction
compared to the much slower descent of o, with angle in the fiber direction. Basically for directions
with high stiflness, the value of o, stays relatively high for increased angle off the normal §. This
amounts to the basic effect of a stiff material seeing a greater stress for a given displacement set up
locally and hence relaying more of the energy than less stiff material directions. The difference in
magnitude becomes apparent at angles greater than 45 degrees. Hence, the fiber direction seems to

draw a higher magnitude disturbance at high angles, corresponding to the fiber direction.

In regard to the AU method, the variation of the radial disturbance with angle relates to what angles
stress waves may be directed. In relation to Lamb wave propagation, a higher angle 8 relates to a
higher wave number in the direction of propagation. Depending on the mode of Lamb wave
propagation this would have different effects on the nature of the Lamb waves. For many of the
higher order modes, the higher input angle would cause higher group velocities, causing the
wavetrain to arrive earlier in the time domain. Also in context to wave tracing approaches, a wave
launched at a higher angle travels through less material, hence arriving earlier and experiencing less
material attenuation. This may relate to the high magnitude of energy early in the AU signal for
the fiber direction, since the higher angle would travel less distance to get to the receiver it should
show up earlier in the signal. Another way of looking at this involves noting the higher group ve-
locity for the higher order Lamb waves associtated with higher angles (this will be discussed later

in the section on Lamb waves).

The major point here is that for a vertical type loading to a free surface the variation of the radial
disturbance with angle can be calculated. Moreover, in general these calculations show the greatest

radial disturbance to be in the normal direction. In the case of anisotropic materials, these results
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Figure 60. Variation of stress with input angle for unidirectional composite
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show that the disturbance may result in more encrgy being relayed in the stiffest directions and for
directions where the material is stiffest, the radial disturbance stays large at higher angles 6. Ilence,
for the composite plate we would expect a greater disturbance in the fiber direction and for more
of the disturbance to take place at higher angles (resulting in a greater disturbance carlier in the
signal). In terms of the AU method, this would correspond to greater energy content for the AU
signal in the fiber direction. Additionally, this would cause the wave characteristics for the fiber
direction to be associated with waves that have higher wave numbers in the fiber direction. This
is in agrecement with the high energy content at the beginning of the signal for the AU in the fiber
dircction. For higher order modes, this is because of the higher group velocities for the higher wave

numbers associated with the higher input angles 4,

It should be kept in mind that Fraunhofer and Fresnel fields may also contribute to input effects,
hence, peaks in the loading function may occur at directions other than through-the-thickness,
which may result in a mode having more than one peak, where the peaks are closely spaced.
Furthermore, certain cases of anisotropy may cause peaks to occur at other directions than 0 de-

grees, naturally.

Through the Thickness Transverse Resonance

The basic idea behind the TTTR concept is understanding how waves propagate perpendicular to
the planc of the plate and how they must be of proper frequency and phase to meet boundary
conditions. This section will concentrate on obtaining characteristics of TTTR modes for the plates
examined in the experiments in chapter 4, for the purpose of comparison. Basically, this will in-
volve finding the displacement vector for the direction of propagation of TTTR modes and then

the frequencies for TTTR modes.
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Aluminum Plates

For the aluminum plates, the equations describing wave propagation are simple and wave motion
is independent of the direction of propagation. For bulk plane waves, the motion of possible dis-

turbances is one of three waves:

P-wave

SV-wave

SH-wave

For propagation in the thickness direction, this leads to an infinite number of possible directions
for perpendicular SV-wave and SH-wave motion, with both these motions perpendicular to the
P-wave (thickness direction) motion. Thus, the plane associated with any azimuthal angle would
possess the same properties for wave propagation characteristics. Therefore, it would be expected
that a symmetric input disturbance would result in an even amount of energy existing for a given
Lamb wave for all azimuthal angles (ie. symmetry prevails). Hence, this may provide a means for

checking the symmetry of a transducer.

Calculating the resonance (TTTR) frequencies resulting from this is rather simple and was covered
in chapter 2. The frequencies for various TTTR modes are displayed in figure 61 for the .0625 inch
thick plate and figure 62 for the .125 inch thick plate.

First, notice that the major frequencies seen experimentally for each plate correspond to frequencies
associated with TTTR modes, except the .7 MHz and .35 MHz low energy components seen at the
beginning of the signal and the very low energy 2.3 MHz component. Also, note that TTTR pre-
dicts frequencies for the .0625 plate to be double those seen in the .125 plate as was noted exper-

imentally. Finally, the particular material parameters associated with aluminum cause certain
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CUTOFF FREQUENCIES FOR ALUMINUM PLATE
6061-T6 {.0625 INCHES THICK)

MODE SYMMETRIC |[ANTISYMMETRIC
FREQUENCY FREQUENCY

NUMBER {(MHz) (MHz)

0 0.0 0.0

1 1.95 .97

2 1.95 3.9

3 5.9 2.9

4 3.9 7.8

5 9.8 4.8

Figure 61. TTTR frequencies (MHz) for .0625 inch thick aluminum plate
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CUTOFF FREQUENCIES FOR ALUMINUM PLATE

6061-T6 ALUMINUM (.126" THICK)

MODE SYMMETRIC ANTISYMMETRIC
FREQUENCY FREQUENCY
NUMBER {(MHz) (MHz)
0 0.0 0.0
1 .95 5
2 1.0 1.9
3 2.9 1.5
4 2.0
3.8
5 4.8 2.5

Figure 62. TTTR frequencies (MHz) for .125 inch thick aluminum plate
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modes to possess nearly the same frequencies. For instance, for the .0625 thick plate both the first
order symmetric and the second order symmetric TTTR mode are at nearly 2 MHz. However, in
this instance the first order symmetric mode possesses a negative group velocity for this frequency

range and may be contributing less to the signal.

Composite Plates

The problem associated with TTTR for composite plates is much more complicated than for the
aluminum plates. First, for the plane associated with any given azimuthal angle the motion of a
wave propagating in the thickness direction is not the same. Specifically, a wave propagating
through the thickness of a composite plate has only one solution (3 waves), compared with infinite
solutions (for infinite planes) for a wave traveling through the thickness of an aluminum plate. This
means the motion of the SV-wave and SH-wave (for the case of x, propagation) are constrained to
take place in certain directions. Therefore, the first problem involves solving the bulk wave prop-
agation problem for the thickness direction and noting the displacement vectors associated with

each mode. Next, the frequencies for TTTR modes are calculated using equations stated earlier.

Bulk Wave Propagation Problem for Composite Plates

Solving the bulk wave problem for wave propagation in the thickness direction of a composite
material involves solving Christoffel’s equation for the x, direction. Hence, the Christoffel equation
indicates a P-wave with only w; displacement. The one shear wave shows displacement in 6n1y the
fiber direction and the other only in the cross fiber direction. However, the displacements for a
given wave will have components in each of the coordinate directions when the wave is sent in a
more general direction. However, for small angles the values vary smoothly from the TTTR, so

that values are still predominately in the directions found for the TTTR case with smaller values
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for the other directions, hence these waves become pseudo waves. A more exact analysis of this

problem may be carried out by using the program (CHRIS.FOR - listing in Appendix G).

The complication of trying to propagate waves at angles slightly off of the x; direction may be ex-
tremely pertinent to understanding AU results. In the Christoffel equation both v, and or v, are
not zero and the resulting version of the Christoffel equation is much more complicated. The sol-
ution to these equations results in shear waves with a,, ay, and a, terms. Ilowever, the general na-
ture of the wave should smoothly vary from that for the x; direction solution. llence, one might
still expect the resonance due to the each type of shear wave to perhaps be greatest in that respective

direction. This is suspected to be the cause for the high values in the following data:

A1(.23,.35) for the 12-ply specimen in the 90 degree dircction (this corresponds to the Ist order

antisymmetric wave in figurc 64)

A1(.53,.75) for the 24-ply specimen in the 90 degree direction (this corresponds to the Ist order

antisymmetric wave in figure 63)

Also, the resonance for the fiber direction oriented SV-wave may contribute to the relatively high
values of these variables in the 0 degree direction, since the TTTR frequency for this resonance is
so close to that for the SV-wave in the cross fiber direction. This points out a general problem of
trying to identify closely spaced and overlapping peaks. Thus, this TTTR frequency is thought to
be associated with the resonance of a shear wave with motion in the cross fiber dircction, causing

greatest motion in the direction where the SV motion is greatest for the plane bulk wave.

Ilence, the physical understanding of the AU method and modcling should account for the gencral
nature of bulk wave propagation in the thickness dircction and at angles slightly off of the thickness
direction. Specifically, it should be understood that the amplitude of the pscudo SV-wave is of
much greater value for the fiber and cross fiber direction for the particular SV-wave associated with

each direction.
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TTTR Frequencies for Composite Plates

Calculating the frequencies for the TTTR modes of an anisotropic material involves using formulas
stated in chapter 2. Notice that extra modes exist duc to separate resonances for each shear wave
polarization. Figure 63 shows a table with values for the first few TTTR modes of the 24-ply
Gr/Ep plate, where material properties were estimated using bulk wave velocity measurements.
Figure 64 shows similar results for the 12-ply specimen. The extra antisymmetric mode makes
picking out particular modes somewhat more complicated for the composite material. 1owever,
again notice that frequency peaks seen in the AU experiments correspond to TTTR frequency
values predicted by theory, using measured bulk wave velocity values. The frequency for TTTR
modes are inversely dependent on plate thickness and agrees with experiment. In general, TTTR

seems to adequately predict frequencies found to be present in the AU data.

Lamb Waves

Solving the L.amb wave equations is by no means a trivial exercise and involves a great deal of care
and computer time. The equations are transcendental for even the simple case of an isotropic
material. In effort, to gain understanding and to decrease computation time, three computer pro-
grams where written for cases of increasing difficulty. Specifically, the following three programs

were utilized:

DISA- Determines the dispersion relations, phase velocities, and displacements for a Lamb

wave in an isotropic material
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TTTR FREQUENCIES
24-PLY GR/EP

MODE SYMMETRIC ANTISYMMETRIC
1 .36 .23 31
2 46 .62 71
3 1.1 .69 93
4 92 1.2 1.4
5 1.8 1.2 1.6

Figure 63. TTTR frequencics (MHz) for 24-ply Gr/Ep plate
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TTTR FREQUENCIES
12-PLY GR/EP PLATE

MODE SYMMETRIC ANTISYMMETRIC
1 .70 46 .61
2 .82 1.24 1.42
3 2.2 1.24 1.8
4 1.8 1.2 2.8
5 3.5 2.3 3.1

Figure 64. TTTR frequencies (MHz) for 12-ply Gr/Ep plate
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ORTII- Determines the dispersion relations, finds phase velocities, and displacements for a
Lamb wave in an orthotropic material where the the wave is sent in a principal direction (for

a composite material this means in either the fiber or cross fiber direction)

GENE- Determines the dispersion relations and finds phase velocities for a Lamb wave in an
orthotropic material where the the wave is sent in any direction (for a composite matcrial this

means the wave may be sent in any direction relative to the fiber direction)

Basically, each of these programs involves solving the motion equation and meeting the stress free
boundary conditions using an assumed linear type of motion. [ach case involves careful attention
to where the solution takes place on the dispersion curve (ie. whether the wave numbers are real
or imaginary). For the isotropic case, this has been formalized and the equations are fairly straight
forward. The major concern here is noting when the wave numbers are real or imaginary to un-
derstand how the solution may have local maxima and minima which may or may not be confused
as solutions. For the anisotropic solutions (ORTH and GENE), whether the wave numbers are
real or imaginary effects how the eigenvectors (wave number ratios /) are determined from the
motion equation. This situation is especially confusing for the general case (GENE), where the

solution is the superposition of many quasi-waves, waves with both normal and shear components.

In fact, finding solutions for the anisotropic cases involved using knowledge gained from the
isotropic case and utilizing the method of uncoupled solutions (ref. 127) to guide where solutions
are sought for the Lamb wave case. The method of uncoupled solutions is covered in reference 127
and in appendix H, it involves setting boundary conditions that decouple shear and longitudinal
waves at plate surfaces. These can then be used as bounds for the Lamb wave solution. The
programs were written to allow this information to be utilized. However, this requires that the user
modify the program code. In the future, these programs should be made more modular and robust,
so that computing can become more automated. Undoubtedly, this will entail some ingenious
programming. Appendix H discusses how the method of uncoupled solutions may be combined

with the existing codes to yield an improved program.
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The following sections and subsections discuss the programs utilized (program listings are in ap-
pendices C, D and E), basic results and the relationship they have to AU results. Major emphasis
is given to identifying the modes of Lamb wave propagation which are present in the AU signal.
This involves examining at the dispersion curve and comparing the values of phase velocities stated

in chapter 4 to the values calculated by the programs for the Lamb waves.

Aluminum Plates

The solution to the Lamb wave problem for aluminum plates involves rather straight forward ap-
plication of the equations stated in chapter 2 for an isotropic plate. For the aluminum plate, there
is no effect due to azimuthal angle, so the Lamb wave problem only needs to be solved for one
plane. The solution can be obtained for symmetric and antisymmetric modes for any order mode
(fundamental, Ist, 2nd...). The same program calculates all these modes, however the user must
input whether the solution is for a symmetric or antisymmetric mode. Data sets from this program

were used for the plots in figures 65-69.

Computer Solution Technique

The equations utilized for obtaining the solution to the Lamb wave propagation in isotropic ma-
terials were covered in chapter 2, the same notation is utilized in the discussion below. The solution
involves picking values of the wave number in the plate direction ¢, starting with low values and
increasing to higher values, making sure they are in the range of interest. The equations stated for
Ha, B, ¢) =0 are utilized, along with the other two equations relating the wave numbers to the
wave frequency and bulk wave velocities, to find the value of w that along with ¢ satisfy the con-
ditions for the desired mode of Lamb wave motion. Basically, this involves looking for where the

function F either gets very close to zero or crosses from a positive value to a negative value. The
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computer program is named DISA.FOR and is listed in appendix C. The program variables

include:

Velocity of longitudinal wave

Mode of Lamb wave

Velocity of shear wave

Plate thickness

From this, the program calculates and stores in an output file:

Wave number in the plate dircction, &, and circular frequency, w (in pairs)

Values for relative amplitudes A, B, C, and D for each pair

UTTT.FOR (Appendix F), reads the output file and then calculates, and sends to separate files

each of the following data sets:

Dispersion curve (w versus {)

Phase velocity versus frequency

Displacement, u, versus frequency (other parameters could be calculated from given informa-

tion, such as stress)

The plots shown and discussed below were produced from these data sets.

168



Computer Results for .0625” Thick Aluminum Plate

The results of the computer program are comparable for the two aluminum plates with the fre-
quency values of the .125” thick plate arc only half those of the .0625” thick plate. Only the results

for the .0625” thick plate are given.

The plots of the dispersion curve and of the phase velocity versus frequency for the fundamental
symmetric mode of the .0625” thick aluminum plate are displayed in figure 65. Notice the
dispersion curve for the fundamental symmetric mode is linear for low frequency/low wave number
values. This means that the phase velocity and group velocity should be roughly the same value.
Then notice the decrease in slope over a short period and then the constant lower slope afterwards.
In the plot of phase velocity versus frequency, the phase velocity is shown to start at a value of
roughly 210,000 inches per second and asymptotically approaches a phase velocity of roughly
110,000 inches per second. It should be noticed that the main change in the phase velocity occurs

at roughly 1 MHz, which is the frequency corresponding to the first TTTR mode.

Figure 66 shows comparable plots for the fundamental antisymmetric mode. Unlike the symmetric
mode, the antisymmetric mode starts out very nonlinear at a very low slope and approaches a fairly
constant slope for higher wave number values. The plot of phase velocity versus frequency shows
that for low frequencies that the phase velocity for the antisymmetric fundamental mode is very low
and increases to approximately 110,000 inches per second, the same value the symmetric mode
approaches. In fact, this is due 1o the fact that both modes degenerate to Rayleigh type waves for

high wave numbers (¢) and hence have the same phase velocity as a Rayleigh wave.

Similar plots for the first order antisymmetric mode are displayed in figure 67. Notice that the
dispersion curve does not start at the origin as does the two fundamental modes, tut starts at the
first TTTR frequency (1 MIIz). This leads to nearly infinite phase velocities, shown in the phase

velocity versus frequency plots. Also, the small slope for small values of ¢ corresponds to a low
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Figure 65. a)Disp. curve and b)V(phase)/freq., plots for fund. symm. mode
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group velocity and also means that for a range of values of ¢, relating to a number of input angles
8, the frequency is practically the same value. For low angles of input or small values of £, this
mode would have high values of phase velocity and would have very low group velocities. An
important point here is that a relatively large amount of the energy for this mode may show up at
a frequency range close to the TTTR frequency, displaying a variety of phase velocities (of fairly
high value) and a variety of group velocities. Analysis shows that even for an input angle of almost
90 degrees, the frequency for the first order antisymmetric mode is still at roughly 1.3 MHz (see
figure 67). The variety of group velocities could relate to the fact that the AU signal (for a given
frequency) is spread out in the time domain. Also, note that the values of the phase velocity vary
quickly with very small changes in frequency and over a fairly small frequency range, while the

phase velocity approaches the Rayleigh wave phase velocity.

The first order symmetric wave shows an even stranger type of behavior. The dispersion curve
starts out with a negative curvature. This means that the group velocity is negative. The meaning
of this is not really clear. It may be that at low wave numbers this mode actually propagates energy
backwards for modes with positive phase velocities. Also, this means that for certain specific fre-
quency values, this mode of Lamb wave propagation may have two different phase velocities, group
velocities, and wave numbers. Additionally, this means there is a value of ¢ where the slope of the
dispersion curve is zero, and hence the group velocity is zero. As with the first order antisymmetric
mode, this mode shows high phase velocities for low value wave numbers. Finally, notice that this

mode starts at just below 2.0 MHz and dips to 1.7 MHz and then climbs back up.

The second order symmetric mode shows behavior much like the first order antisymmetric mode,

but of course for & = 0 shows a frequency value of 2.0 MHz.

The higher order modes show similar behavior, but of course show higher frequency values for the
TTTR situation ¢ =0. The only other mode to show a negative slope is the second order anti-
symmetric mode. Also, the higher order modes show dispersion curves with increasingly flat be-

havior for low values of ¢£.
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Compavison of Computer Results to Experimental Results

For the aluminum plates, the TTTR frequencies seem to be inversely related to the plate thickness
for both the experimental and numerical results. Specifically, the frequency for the higher order
modes shows a linear inverse relation to plate thickness. Since the experiments and theory agree
in this matter and the experimental data shows little other major differences, the rest of the dis-

cussion is specified to the .0625” thick plate.

For the .0625” thick aluminum plate, only 3 modes are possible for the 1 MHz signal content- the
fundamental symmetric, fundamental antisymmetric, and the first order antisymmetric modes.
However, the large value for the experimentally measured phase velocity (chapter 2, fig. 34), im-
mediately disqualifies the two fundamental modes as the possible means of wave propagation.
Hence, further investigation should be centered on the first order antisymmetric mode as a possible
mode of wave propagation for the 1 MHz signal content seen in the AU signal. Further evidence
for this conclusion will be presented in the section on modeling. It should be noted that the 1 Mz
area of the first order antisymmetric mode is in the low wave number { area, relating to a low input
angle, agreeing with the predominately normal input associated with the AU method. Additionally,
the group velocity for the 1| MHz component of the signal was measured to be much lower than
the phase velocity, the exact situation that would be expected for the higher order Lamb wave
modes at low wave numbers. In figure 30 and 31, the peak at 1 MHz in the spectrum seems to trail
off slowly, indicating that a number of wave numbers are contributing to the energy content in this
frequency range. In otherwords, the the wider band width indicates that disturbances sent out at
a number of angles may be contributing to the signal in this frequency range (see fig. 74). In gen-
eral, the | MHz signal content possessed characteristics that agree with the first order antisymmetric

Lamb wave for low wave numbers.

The 2 MHz signal content showed behavior that indicates that it is either the second or first order

symmetric Lamb wave. Although the frequency (2 MHz) of the first order symmetric mode agrees
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with the data, the negative group velocity associated with this mode does not agree with exper-
imental measurements. Hence, the 2 MHz signal content seems to be the second order symmetric
mode at Jow wave numbers. Notice in figures 30 and 31 that the peak in the spectrum for this
frequency content is much sharper, this may indicate that only the very lowest wave numbers are
contributing. This is also supported by the extremely high phase velocities measured for the 2 MHz
signal content. Thus, the 2 MHz shows a sharper peak and a higher phase velocity than the 1 MHz
signal content, indicating that the 2 MHz (possibly the second order symmetric Lamb wave) signal
content may be due to radial disturbances more closely aligned with the vertical than the disturb-
ances associated with the 1 MHz (first order symmetric Lamb wave). Additionally, certain features
of the 2 MHz peak (lack of skewness), indicate that the first order symmetric mode may also be

contributing to the energy in the signal at this frequency range.

The .7 MHz content at the beginning of the signal showed characteristics of a fundamental sym-
metric wave. This is supported by the measured phase velocity measurement and the fact that the
group velocity was the same as the phase velocity. This wave could be a bulk P-wave, however the
wave velocity is lower and agrees more with that of the symmetric fundamental mode. However,
more work needs to be conducted to understand why the wave is centered at .7 MHz. This may
be a combined effect of transducer size and pulsing frequency. An understanding of this could most

likely be obtained by comparing Green's function results (ref. 14) to Lamb wave theory.

Finally, it is noted that a small 2.3 MIz signal content was noted and that this frequency is that
of the Goodier-Bishop mode (ref. 142). It was not possible to measure the velocity of this mode

because of its low energy content.

Effects of Lamb Waves on AU Signal

For the aluminum plate, the AU signal consists of an early portion of the signal (.7 MHz for the

.0625” thick plate) which separates from the rest of the wave train due to a much faster group ve-
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locity. 'This carly portion of the signal scems to be a fundamenta] symmctric Lamb wavce and is

present in the wave train for a time on the order of the pulse width.

The bulk of the wavetrain consists of a higher amplitude, very fast phase velocity (yet varied), slow
group velocity, signal content which continues on in the wavetrain for a much longer time than the
carly part of the signal. Tt is believed that this portion of the wave train is made up of the higher
order modes at low wave numbers, corresponding to low input angles 8. The order of the modes
which arc excited depends on the frequency of the transducc-rs and the thickness of the plate. As
indicated, the long wave train associated with the AU method agrees with what would be expected
from higher order Lamb waves. As a result of the higher amplitude and the wavctrain length as-
sociated with these modes, it appears that the cnergy content of the signal is dominated by these
higher order modes. This situation may not necessarily be true for all experimental arrangements,
however most reported data, including the carly work by Vary that related AU to strength, utilizes
this type of experimental arrangement. Basically, the standard AU configuration dirccts most of
the energy in the through-the-thickness direction at a frequency range associated with TTTR valucs,

thus exciting higher order Lamb wave modes.

Experimentally, the effeet of the wave velocities can be clearly seen by separating the sending and
receiving transducers and noting the effect on the wavetrain. Tor the .0625 plate, the .7 MIlz
content scparates into the carly portion of the wave train, due to the fast group velocity and moves
rather undistorted, since the group velocity is comparable to the phase velocity. The other parts
of the wave train (1 and 2 MIlz portions) show phasc points that move slightly in the time scale,
in other words display very fast phase velocities, but whose amplitude values change rapidly due to

a modulating term which moves great distances in the wave train due to a very slow group velocity.

In gencral, utilizing a conventional AU arrangement on an aluminum plate resulted in a signal
which scemed to be dominated, in terms of energy content, by waves showing characteristics of
higher order Lamb waves.  Specifically, this resulted in a long wave train dominated by frequencics

close to TTTR valucs.
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Composite Plates

The Lamb wave problem for composite plates is much more complicated than for isotropic mate-
rials, solving this problem involved using the method of partial waves. An additional problem is
that the solution to the Lamb wave problem is different for every azimuthal angle. Additionally,
the computation involved for every azimuthal angle is much more complicated. Also, the

anisotropy of the material allows for additional modes of Lamb wave propagation.

Another major difference is that the Lamb waves for anisotropic materials tend to have kinks in
their dispersion curves, due to the crossing of the uncoupled modes (ref. 127). In other words, the
curves are not nearly as smooth, but tend to follow one asymptote and then follow another, re-
sulting in a change in direction. This is caused by the different material properties associated with

the different directions (8,) associated with the different wavenumbers.

As with the elasticity solution, the Lamb wave problem for composite materials is easier to solve
in the fiber and cross fiber directions. One program (ORTH.FOR) was written to solve the Lamb
wave problem for the simplified cases, fiber and cross fiber directions, and another (GENE.FOR)
was written to solve the problem for the more general case, where waves can propagate in any di-

rection.

It is believed that increased understanding and modeling of the AU method is possible through
rigorous application and amplification of the ORTH.FOR and GENE.FOR codes. The purpose
of this dissertation is to set the foundation for this approach, utilizing these two codes. Since these
codes are central to both present and future efforts, this text includes a discussion on the two pro-
grams, as well as the listings in the appendices (appendices D and E). Moreover, comments con-
cerning how these codes may be utilized and perhaps amplified are offered. In fact, discussion on

modeling in the next chapter involves utilizing these codes.
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Computer Solution Technique

As mentioned, the method of partial waves is utilized in both the ORTI.FOR and GENE.IFOR

codes. The basic solution technique involves the following steps:

1.

Define wave number value, &

Find a good initial guess for w

Solve Christoffel matrix equation to obtain the values for wave number ratio /,

Find eigenvectors or displacement vectors o, (choosing the right eigenvector is not a simple

matter and can drastically effect results if the wrong one is picked)

Calculate K, from stress free boundary conditions

Calculate F by taking the determinant of Kj;

Determine if F is sufficiently close to zero (If Fis not zero, then go back to step 3 and try a

new value of « and if F is closc enough to zero then continue)

If the correct values for a k and o pair have been found, then use boundary conditions to find

values for C,’s and also calculate the phase velocity

Store data

10. If k is equal to the counter value stop, if & is lower than the counter then return to step one
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Solving this problem provides the dispersion information (w and & pairs). In addition, velocity and
displacement information can be ascertained in a simple fashion. In addition, other variables such

as group velocity may be estimated by additional calculations.

In general, the solution strategy is fairly straight forward, however there are a couple of issues which
can cause difficulties when generating results. These include both problems with interpreting results

from calculations and with choosing proper eigenvectors.

First, the function F may appear to be close to zero and yct not actually be going to zero. This is
due to the complex nature of the function and the many local maxima and minima associated with
the F function. Alleviating this difficulty is possible by judiciously sclecting w values that are close
to the correct  for the given k. This can be done by utilizing gencral knowledgc on how dispersion
curves of Lamb waves behave and by utilizing the uncoupled mode theory to provide values for

initial guesses.

‘The other problem which may be encountered in blindly appplying the partial wave equations is
that of not choosing the proper eigenvectors or displacement vector upon solving the Christroffel
equation for the partial waves. Attention must be given to choosing eigenvectors which represent

the proper motion for lhe'partial waves to make Lamb waves (see ref. 127).
The input for each code involves the following parameters:

Stiffness matrix

Matcrial density

Plate thickness

Azimuthal angle
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Information on guesses, this defines what mode the solution is finding (eventually this should

be included in program logic- see appendix H)

ORTH.FOR

As mentioned, the solution for the casec where the wave is sent in the direction of the fibers or the
cross fiber direction is much simpler due to the decoupling of P-wave and SV-wave modes from
SII-wave modes. This is observed when one looks at the eigenvalue problem derived from the

partial wave Christoffel equation:

Dy, + £Css) 0 ((Cy3 + Css))_ oy
0 (D66 + 12C44) O Gy | = 0
((Cy3 + Css)) 0 (Dss +PCyy)™ g
pw? . - :
where D, = Cij_?’ / is the wave number ratio, and a, arc the displacement vector values.

Obviously, the middle term can be decoupled and solved for the SII-wave modes. However, the
solution to this problem for the general case of waves propagating in a general direction (ie. not the

fiber or cross fiber direction) leaves this matrix problem fully populated.

It should also be noted that the cquation for the wave number ratio for the (P-wave and SV-wave
coupled) case yields four values of / that relate each of the four partial waves that make up the
symmetric and antisymmetric Lamb waves. This equation is derived upon setting the determinant
of the matrix to zero, factoring out the quadratic equation for the SH-mode and solving the 4-th
order polynomial. Since the equation only involves squared terms, the solution follows easily from
the quadratic equation. Then the values of the «,'s corresponding to each of the /s can be dcter-
mined up to a constant through back substitution. It is important to properly choose the a values.
This involves choosing partial waves where the displacement vectors are properly oriented. These

functions are performed in sections 4 and 5 of the code.
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Next, the partial waves are superposed to obtain the displacement equation:

6
o,
u = C,zaj(") exp(ik{x + I‘S")z))

n=1I
These values were then differentiated to produce strains associated with the stress wave propagation.
The strains were then combined with the constitutive relations to yicld stresses. It should be noted
that the values of C, dcetermine the nature of the displacement field for any mode of propagation.
The stress free boundary conditions determine these up to a constant, but it is the domain of

modeling cfforts to determine this constant. This is discussed in the next chapter.

Next, the stress equations were used with the boundary conditions
33 =1 8)=0

and

T5(x3 =4 b) =0

to yield the next eigenvalue problem. Note thesc boundary conditions are only for the P-wave and

SV-wave modes. In this problem, the values of C, are the eigenvector values.

The matrix K, is obtained by taking the coefficient of cach C, for cach of the four boundary con-
ditions. Hence, the rows (i-value) of the K, matrix are determined by which boundary condition
is used and the columns (j-value) by which C, is used. The terms of the matrix are defined in sec-

tion 6 of the program ORTIL.FOR.

Finding the determinant of X, is used to determine if the dispersion condition is met. This involves
taking the magnitude of the detenminant and checking if it is close enough to zero, mathematically
this is expressed by Flw, ¢, /, o,) = 0. This determinant of the matrix and the value F is found in

section 7 of the program. The equation for F is utilized to see if the w -k pair is appropriate (ie.
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if the determinant K, = 0). Section 8 checks to see if the dispersion condition is met. If the de-
terminant is zero then the equations from the stress conditions can be used to solve for the values
of C, up to the constant, which may be approximated by the elasticity solution. The values for

C, and the phase velocity are determined in section 9. Section 10 writes the results to output files.

GENE.FOR

The procedure for solving the Lamb wave equations in the gencral case are the same except that
the preliminary step of defining an azimuthal angle is necessary and each basic step is much more

complicated.

Steps 1-3 sct up the value used for & and w, in the same manner they were in ORTH.FOR. The
only extra complication is that choosing guess values for the general case is orders of magnitude

more difficult.

Solving the Christoffel equation for the partial waves involves solving a 6-th order polynomial since
the SH-mode is coupled with the other solutions. However, the equation can be treated as a cubic
equation of squared values. This was solved using a standard approach (ref. 37). Section 4 contains

the solution to the Christoffel equation for the partial waves.

The equation for ¥; is similar, except all six partial waves must be included in the summed equation.
Application of strain and constitutive equations are similar, except that the extra shear stresses in
the x, direction (1,;) must be considered. Thus, the matrix K, is a 6 by 6 matrix, instead of a 4 by
4. This makes the calculation of the determinant, and hence the calculation of F much rﬁore dif-

ficult. Sections 6-7 make these calculations

In general, the rest of the solution is similar and can be followed by comparing the listing for

GENE.FOR to ORTH.FOR. It should be noted that extra modes exist for the general case, hence
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extra special care must be taken to look for the solution of a particular mode in the right area. In
fact some of the higher modes, start at the same value of frequency w for & =0, but quickly turn
into different curves where different w’s exist for the same ¢ (ref. 127).  Determining these curves,

for just one azimuthal angle is a very arduous and time consumming endeavor.

Computer Results

This section will show some sample results found using the above codes for the purpose of showing
the utility of the codes and for the purpose of identifying modes of wave propagation associated

with the AU method.

The plots for the fundamental antisymmetric modes for waves sent in the fiber direction and cross
fiber direction are shown in figures 68 and 69, respectively. Notice the effect of the material prop-

erties on the shapes of the dispersion curves.

Figure 70 displays the dispersion curve and phase velocity versus frequency for the fundamental
symmetric Lamb wave sent in the 0 degree direction. Figure 71 displays a similar plot for the
fundamental Lamb wave sent in the 90 degree direction. Similar plots for the third order symmetric
Lamb wave are shown in figure 72 for the 0 degree direction and figure 73 for the 90 degree direc-

tion.

Comparison of Computer Results to Experimental Results

Information from these plots is useful for identifying the modes of propagation in the composite
plates and for helping to understand the general behavior seen in the experimental results, This
includes using both wave velocity calculations and dispersion curve results. Much of this discussion

is of a qualitative nature.
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Figure 73.

a) DISPERSION CURVE
GR/EP PLATE (UNIDIRECTIONAL)

CIRC. FREQ. {MILL))
30

25
20

16

10

5

o - 1 1 1 L

[o] 50 100 150 200 250
WAVENUMBER
— FREQUENCY
80 deg. 1st antl.
b) PHASE VELOCITY VERSUS FREQUENCY
12-PLY GR/EP UNIDIRECTIONAL

8PHASE VELOCITY ({IN./SEC.) (Milllons)
7
[}
5
4
3
2
1
O 1 i

(o} 500 1500 2000 2500

1000
FREQUENCY (Thousands)
— PHASE VELOCITY

90 deg. 1st. antl.

a)Disp. curve and b)V(phase)/freq. plots, 3rd. symm,. 90-deg.

189



The main issue here in terms of comparison to experimental results is that the phase velocities for
the fundamental modes are below those measured with the AU method. However, the AU results
for the composite plate do not show nearly so drastic a difference in the phase velocities measured

in AU results compared to those predicted for fundamental Lamb waves.

Also, it is interesting to note the effect of the azimuthal angle (variation of material properties) on
how the higher order mode, 3rd order symmetric mode, behaves for small values of £. This shows
how the dispersion curve for the fiber direction turns upward (higher slope - higher group velocity),
much earlier than the 90 degree direction (see figs. 72 and 73). Also, note the abrupt change from
the quick rise to a slow move across, this is due to the 5th order uncoupled shear wave crossing the
uncoupled P-wave (see appendix H). The early steep rise corroborates experimental results, which

show more energy for this mode to be present earlier in the wavetrain for the fiber direction.

A more intensive study of how higher order mode velocity versus frequency plots vary with
azimuthal angle may help to explain the measured phase velocities given in chapter 4. In general,
the very nonlinear behavior of the curves for the higher order modes has a drastic effect on results
and the variation of material properties with azimuthal angle has an effect on the nonlinear behavior

of the curves for higher order Lamb wave modes.

Lamb Wave Propagation and AU for Composite Plates

Results indicate that, as with the aluminum plate, composite plates propagate the bulk of the energy
in the AU signal via higher order Lamb wave modes at relatively low wave numbers, corresponding
to small angles 8,. This is not quite as obvious for the composite plates (especially the 24-ply plate),
since the measured phase velocities are not nearly as large for the composite plates as they are for
the aluminum plates. This may be due to a variety of reasons. For example, the general anisotropy
of the plates may cause the energy to be less centered at low angles, corresponding to the higher

phase velocities. Also, the higher material attenuation may cause the low angle (low wave number)
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(high phase velocity) waves to be more attenuated due to the increased distance of plane wave
travel. This idea is supported by the fact that the 12-ply plate showed much faster phase velocities
than the 24-ply plate (thicker plate with more material for reflected waves to travel through). The
wider bandwidth for frequency peaks in the composite plates experimentally supports the notion

that increased spread of energy exists in the composite plate, compared to the aluminum.

In addition, due to the variation of material properties with azimuthal angles, a number of inter-

esting phenomena affect the dispersion and displacement behavior of these modes with azimuthal

angle.

First, the displacement vector associated with shear waves sent in directions just off the normal di-
rection, x;, may have an effect on the disturbance caused by certain modes. This relates to the
discussion on the TTTR mode where it was noted that the two possible shear waves which may

propagate in the thickness direction are:

Shear wave where displacement is in the fiber direction

Shear wave where displacement is in the cross fiber direction

Thus, one would expect that for shear waves sent just off the normal, in for example the cross fiber
direction, the shear wave with displacement in the cross fiber direction would behave as a mostly
SV-wave and contribute to exciting out of plane displacement. The other shear wave would relate
to the SH-mode with just in-plane displacement for the cross fiber direction. Hence, one would
expect the high order mode that crosses the frequency curve at the value associated with the TTTR
for that shear wave to have a higher out of plane displacement in the cross fiber direction, where
the motion is predominately SV-wave type and hence contributes more to out of plane Lamb wave
motion, as opposed to SH-Lamb wave motion. This is an explanation for the high value of the
.234 MHz signal content for the 24-ply plate in the 90 degree direction. A full utilization of mod-

eling efforts can be used to confirm or reject this heuristic argument.
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For certain modes the displacement out of plane is large, while for others the in-plane displacement
is large. For the higher order modes at low wave numbers, the resonances associated with the P-
wave resonance (lst order symmetric, 2nd order antisymmetric, 3rd order symmetric, 4th order
antisymmetric) would be expected to have greater out of plane displacements. In fact, the 2nd order
antisymmetric seems to be one of the modes of propagation, while the 3rd order symmetric is most
definitely a mode scen for the 12-ply and 24-ply panels. Additionally, the 24-ply panel showed a
peak for the 4th order antisymmetric mode at low azimuthal angles. Thus, the P-wave resonance
modes, which would cause a large disturbance at low wave number values, seem to contribute
largely to the AU results for the composite plate signal in the low azimuthal angle (high stiffness)
directions, this is confirmed by the high values of A1(.9,1.1), 3rd order symmetric wave (P-wave
resonance), seen in the 24-ply panel and the similar results for A1(1.9,2.1) obtained on the 12-ply

laminate.

Another interesting phenomenon is the quicker drop in energy content of the 2nd order antisym-
metric mode at low azimuthal angles compared to the 3rd order symmetric. For the 24-ply panel
this can be seen in the azimuthal plots of A1(.62,.68)-2nd order antisymmetric and A1(.9,1.1)-3rd
order symmetric. The 12-ply panels showed the same type of variation, in fact the results for the
12-ply panel showed an even more drastic effect of a high energy content at 15 degrees for the 3rd
order symmetric mode. This behavior has also been noted in numerous other pancls (ref. 9,99).

A search for an explanation leads to a couple of places:

Does the energy flux for the antisymmetric motion draw energy over to the fiber direction more

than for the symmetric (Modeling efforts should provide this comparison)

How does the displacement behavior of the 3rd order symmetric wave compare with C;, (plane
strain) variation with azimuthal angle, the displacement field associated with the 2nd order

antisymmetric wave, and E, (plane stress), variation with azimuthal angle
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It should be noted that the measurement of energy content of the 3rd order symmetric mode at 15

degrees is relatively low for the 2 inch measurement, compared to the 1 inch measurement. This |
tends to indicate that the 1 inch results are simply due to a lesser energy flux deviation angle for
3rd order symmetric mode, compared to the 2nd order antisymmetric mode, in the 15 degree di-
rection. Hence, it may be simply a matter of energy flux and geometry. An understanding of this
effect may eventually become possible by utilizing modeling ideas forwarded in the next chapter.
Eventually, energy flux behavior may be more directly related to engineering properties discussed
in the literature search (coefficient of mutual influence etc.) and these results may provide a good
experimental means of determining how local values of these parameters which measure material

anisotropy change with damage.

Another aspect associated with the higher order modes is the fact that for low wave numbers the
frequency is practically the same for a sizeable range of wave numbers. This means that the energy
seen for a certain higher order mode at a certain azimuthal angle is actually the integrated effect of
the energy associated with a range of low wave numbers. Thus, this is where the issue of how
material properties affect the nature of these curves and where they curve up (show a higher group
velocity) becomes an issue. Figures 72 and 73 show how the stiffer material in the 0 degree direc-
tion affects the shape of the dispersion curve for the higher order mode, and hence signal energy

content, frequency content, and time placement.

In general, a number of effects control how the energy originally introduced to the top surface of
the compositre plate is channeled through the plate in the various azimuthal directions. These in-

clude the following:
How surface input disturbance causes different radial disturbances (elasticity solution)

Dispersion curve behavior
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Displacement associated with each mode and how it is affected by direction (this effect is es-
pecially noted in the high energy for the Ist order antisymmetric wave related to the SV-wave

for the cross fiber resonance condition)

Energy flux behavior

Variation of damping effects with azimuthal angle
Directional effects of damage on different modes

The identification of the higher order modes which make up the AU signal will allow the under-

standing and computation of these effects to be accomplished.

General Physical Understanding of AU Results

A series of carefully performed experiments on the AU technique have identificd the major modes
of wave propagation present in the AU signal as higher order Lamb waves with low wave numbers

k that correlate to low input angles. A number of factors contribute to this conclusion:
Results indicate disturbances arc the same on the top and bottom surface (ref. 8)
Phase velocity measurcments
Group velocity measurements
Frequency content

‘These modes agree with modes that would have maximum displacement out of plane
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These modes would be expected based on theory and characterization of input

Furthermore, an understanding of why these waves dominate the AU signal can be ascertained by

looking at several factors:

Elasticity solution for point load on a half space (idealization of transducer input) shows that
the major radial disturbance takes place at low angles, corresponding to low wave numbers,

agrecing with general obscrved behavior and other theory

The frequency response of the transducer used in this work (representative of transducers used
in general AU configurations) causes disturbances that arc of a frequency range (TTTR fre-
quencics) for the higher order modes at low angles instead of the lower frequency range that

the fundamental Lamb waves would have for low angles of 0,

The higher order modes show disturbances at a range of low input angles that are of a relatively
constant value of frequency, hence the peak in the frequency domain corresponds to a number

of points where the dispersion curve is flat and of a fairly constant value

Some of the higher order modes scen have a large 1, (however, other modes seen would not

be expected to have as large of a ,?)

In simplc terms this means, that if you apply a predominately normal force sufficiently fast to the
face of a plate, then radial disturbances will emanate outward at various angles, with by far the
greatest energy content in the thickness direction or at small angles off of the thickness direction.
Disturbances that contain frequencies relating to wavelengths that are half multiples of the plate
thickness and of proper phase will meet the stress free boundary conditions and hence propagate
through the material by reflecting back and forth between surfaces. Results indicate that by using
higher frequency transducers, it is possible to excite higher order Lamb waves. The Lamb wave
equations describe the plate modes caused by the plane waves resonating between the top and

bottom surface of the plate. Hence, a physical understanding of this behavior may be obtained by
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attempting to trace this reflection problem or by simply using the Lamb wave equations. Obvi-
ously, wave motion impinges upon the stress free surfaces and results in sizeable surface displace-

ments, to be measured by the receiving transducers.

Another interesting fact is that in all cases the phase velocity measured for the higher frequency
was higher than the lower frequency. This may be explained by noting that for a given k value, the
higher frequency value will obviously have a higher phase velocity (v, = —%). Hence, for the
range of k’s associated with the AU mcthod, higher frequencies should causg a higher phase ve-
locity, for higher order Lamb waves. In this regard, experimental results again agree with a physical

understanding based on higher order Lamb waves.

Also, the wavetrain for the .0625” thick aluminum plate showed the 2 MHz signal to dominate the
end of the wavetrain, which agrees with the expected behavior of the 2nd order symmetric Lamb
wave, relating to the long smooth slope of the dispersion curve. The small bandwidth on the 2

MUz peak also agrees with the slower rising behavior of the 2nd order symmetric mode.

The experiment on tilting the sending transducer showed that by causing more of the disturbance
1o be sent at higher angles of inclination to the normal causes a slight increase in the values of the
frequency peaks. This shows that the higher angle 8,, causes a higher wave number %, causing a
higher frequency value. In terms of resonance this generally relates to a longer wavelength. An-
other major point here is that this tends to indicate that the mode of propagation related to the
negative group velocity portion of the Ist order symmetric mode is not contributing to the signal,
validating claims in a couple of incidences where this mode was discounted as a mode of propa-

gation, in place of another mode with a closely placed frequency value.

Experiments performed on the tapered plate provide further information on the general nature of
the wave propagation associated with the AU method. One major interest in performing these
tests was to see if the frequency content of the signal obtained across the taper was more indicative

of the frequency content of the side where the sender was placed or where the receiver was placed.
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Results showed that the signal across the taper showed frequency peaks associated with both the
sending side and the receiving side. One notable result is that a .5 MIiz peak was produced by
placing the sending transducer on the thin side (where the lowest TTTR frequency is 1.0 MHz) and
the receiving transducer on the thicker side. The major point is that the disturbance is not produced
solely by way of the sending transducer creating resonances directly through the thickness, but is
the result of plate waves being produced by plane type waves sent off at various angles. Hence, this
sct of experiments substantiated the physical understanding obtained from experiments on the flat

plates.
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AU Modeling

As stated in the introduction, engineering requires basic models for use in relating measurable pa-
rameters to parameters which predict ensuing material behavior. The purpose of modeling the AU
technique is to relate AU parameters to parameters which describe composite material behavior.
To start with, AU results can be related to the moduli of composite materials. This is possible
utilizing concepts from our physical understanding of the AU method. Thus, the first section of
this chapter will forward a basic approach for modeling the AU method using the physical under-
standing of the AU technique forwarded last chapter. This will include a partial example for an
aluminum plate. Comments are offered on the procedure for modeling the AU of a composite plate
and the difficulty in computing all the results. Next, comments are offered on other factors which
contribute to AU results and how to possibly account for them. This section consists of a good

deal of conjecture and is presented to foster further developments in AU modeling.

The final section of this chapter contributes statements on relations between AU modeling and fa-
tigue modeling. This is the fusing step which should help transform the AU method from a non-

destructive testing technique to a nondestructive evaluation technique.
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Simple AU Model

Utilizing concepts from the last chapter, a procedure for modeling the AU technique may be de-

veloped. Obviously, this will involve using the theory forwarded in the last chapter along with in-

formation obtained by comparing this theory with experimental results. Specifically, certain

assumptions are made based on experimental results. The outline for this procedure follows these

basic steps:

L.

Determine spectral density of input force from transducer

Determine dependence of the magnitude of the radial disturbance on angle () [elasticity, finite

element method etc|

Solve TTTR problem with particular attention to displacement vectors for transverse reso-
nance modes (this gives information on frequencies of interest and on displacement for trans-

verse modes)

Solve Lamb wave problem for higher order modes and obtain basic dispersion information’

Solve for u; coefficient values, at low wave numbers, by using stress free boundary conditions
and setting the value of the coeflicient for partial wave (composite solution) or P-wave po-
tential (isotropic plate solution) equal to relative magnitude based on radial value of o, from

elasticity solution or other method like finite element method

If solving for a general direction on the composite material, solve for the value of 1, and set
the magnitude of the corresponding shear wave equal to the same value and then solve for u,

again

Add the values of y, together from both the P-wave and the SV-wave
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8. For composite plate do steps 1-7 for different azimuthal angles

9. Compute energy fluxes for various azimuthal angles on plots

10. Compute the energy flux by some sort of integration scheme for a given region of area related

to region of arc associated with how many azimuthal angles are utilized (this is discussed later)

11. For each mode of propagation over a range of frequencies calculate the magnitude of disturb-

ance for that mode (ie. &, magnitude of E, vector, etc.)

12. Compare variation of magnitude indicator with frequency to spectrum output and compare

values of relative peaks

This gives us basic information on the relative values to expect for various peaks in the frequency
spectrum for an undamaged specimen and an indication of what AU values should be relative to
each other. Moreover, for a composite material this provides a means for predicting how various
AU parameters may vary with azimuthal angle. At the very least, it provides a means for predicting
what frequency content should be present for various applications, contributing a tool which may
be used for developing optimal AU systems to get the most informative AU signal. Also, with
improvements in the model and the method in general, this may provide a means for keeping track
of the materials energy dissipating mechanisms. An understanding of how the energy in the various
modes, with their various displacement and stress fields (given by theory), is transmitted or dissi-
pated may provide important information on the mechanical effects of different damage states.
Conversely, this provides a means for identifying the damage state and perhaps the magnitude of
its mechanical effect. This type of understanding is possible now that a physical understanding of

the AU method for composite materials exists.

Information on stiffness may be determined by measurements made in the time domain which in-
dicate phase velocities and group velocities. If a phase velocity and a group velocity can be exper-

imentally measured for a given frequency range over the length of the signal, it may be possible to
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obtain a fairly accurate dispersion curve. Using theory, the same dispersion curve may be con-
structed a number of times using various values for material properties. By comparing dispersion
curves, it may be possible to infer (eg.regression techniques) the variation in material properties
with angle for that direction. In fact, a system could be designed that has one sending transducer
and two or more transducers at various azmimuthal angles to determine material properties in a
number of directions. The system may also be improved by filtering the signal to certain frequency
ranges to keep out the effects of other modes and to hence make velocity measurements easier.
Modeling efforts may make it possible to fnake quick stiffness measurements in all directions via
the AU technique. However, this will involve using more advanced signal processing techniques,
such as the analytic signal (refs. 16 and 147). Also, it wiﬂ entail using an altered experimental set-up
with multiple transducers and various other experimental additions. Again, interpreting results from
this type of arrangement are possible now that a physical understanding of the AU method exists.
In general, the long wavetrain associated with the AU method is packed with information from the
numerous modes and ranges of wavenumbers on the dispersion curve, which contribute to the
signal. Now that these modes have been identified, experimental set-up and signal analysis can be
used to obtain as much information as possible on material state. Undoubtedly, this will take years
of further work, but now that a basic physical model is formulated, this work has a direction to

follow.

Aluminum Plate Application

In order to understand the application of the modeling approach, a short example is provided to
exemplify how the frequency spectrum for a Lamb wave mode may be calculated for AU on a
.0625” thick aluminum plate using 2.25 MHz transducers. Also, this application of the model acts
to exemplify certain aspects of the physical understanding which were tacitly stated in the last

chapter. The effects of other facets of the problem, such as frequency dependent attenuation, are
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not accounted for in these predictions. Because of this and the simplification of other facets of the

problem, the purpose here is not to reproduce the exact spectrum, but to show the general trend.

The AU method was performed on the .0625” thick aluminum plate, using 2.25 MHz transducers.
The charactcrization of the sender was shown in figure 24 in chapter 3. The effect of the transducer
frequency response and the effect of the way the radial response varies with the angle from the
normal are included in calculations. First, the functional dependence of the magnitude of the input
was shown to be cos?(@;). This valuc was just substituted into the value for the P-wave magnitude
in the displacement equations. Displacement values for a set frequency were then multiplied by the
magnitude of the transducer response for that frequency to account for the frequency dependence

of the input.

A plot of u, (displacement) magnitude is offered for the Ist order antisymmetric mode on the .0625
thick plate, along with a comparison spectrum for the same plate, in figure 74. This plot shows that
the frequency dependent behavior of the displacement values are similar to the behavior of the 1
MHz peak in the AU spectrum. Note that both the model and the signal spectrum show a curve
which rises rapidly to a peak at 1 MHz and trail off to zero at about 1.3 MHz. Another point of
interest is the symmetrical nature of the 2.0 MHz peak and the minima value at around 2.0 MHz
in the signal spectrum. This may be due to the combined effects of the st and 2nd order symmetric
Lamb waves, where the st order is contributing to the rising part of the left part of the peak (e.g.

for lower frequency values after the minima of this function).

An additional, concern here is the idealization of the cos(f;) as the input variation. In reality,
Fresnel and Fraunhofer diffraction effects are most likely taking place. Future models should at-

tempt to include these type of effects on the input and, hence AU results.

Ultimately, a less simplified model should sum the effects of every Lamb mode that is within the
frequency range of the system. This would provide a means for noticing abnormalities in results

and perhaps at some point modeling these effects.
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A couple of the more pertinent issues concerning this approach include:

How the effect of the input disturbance is included in the Lamb wave equations

What to use to mode! the magnitude of the output for AU signal (eg. y etc.)

Here the input stress (calculated from the elasticity solution) was simply used to control the mag-
nitude of the P-wave potential. However, there may be a more appropriate means of accounting

for the input.

For normal mode transducers, it would be expected that the w; value at the top surface would cor-
relate most closely to the output signal, but for other measurement techniques, the values of other

displacement terms or stresses may be of use.

Discussion of Applying Model to Composites

The problem of modeling the AU method for composite materials is significantly more complicated
than for isotropic materials. Anisotropic properties not only cause the variation of the AU response
with azimuthal angles, but make the calculation of Lamb wave dispersion curves much more
complicated due to the variation of properties with the angle off the normal and the coupled be-
havior of the quasi P-wave, quasi SV-wave, and quasi SH-wave. Major problems, beyond concept,
exist with the computing problem and the huge effort that it takes to even obtain the basic

dispersion information in a general direction using the uncoupled mode method.

First, the elasticity problem provides stresses to indicate the magnitude of the disturbance at each
input angle 8, or 8;. This involves a good deal of computation, just to get the stresses. Then, the

shear and normal stress are each used in separate calculations with the Lamb waves. However,
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there may be a more appropriate means for including both these stresses in one Lamb wave dis-

placement equation solution.

Next, the general solution for a Lamb wave is the summation of a six term displacement equation.
The 6 term displacement equation is then differentiated for strains and utilized in the constitutive
relations to get stresses. This then creates very long terms which describe the stress ficld. These
equations are then used in the stress free boundary conditions to create a 6 by 6 system of equations
which need to be checked for the dispersion condition and then can be uscd with the elasticity re-
sults to calculate the coefficients of each of the 6 partial waves. Just to find a point on the curve
involves stepping through this procedure 100’s of times. Then to obtain the whole curve involves
going through the whole procedure including the search for the right solution hundreds of times.

This must be done for a number of modes and then a number of azimuthal angles.

Finally, consideration must be given to energy flux. Calculating the energy flux deviation for a
Lamb wave, where the displacement equation is represented by 6 terms, creates another huge
computational chore. Accounting for the effect of the energy flux deviation causes one of the major
conceptial difficulties associated with modeling AU of composites. The following is a simple ap-

proach for including the effect of energy flux in AU results:
Solve the Lamb wave problem for certain discrete azimuthal angles
Calculate energy flux direction for each Lamb wave mode

Solve the geometric problem in order to find, for a particular transducer size and transducer
separation distance, where on the arc subtended by the recetving transducer the effect of dis-

placement is present

Integrate displacement for each azimuthal angle to find a distribution of displacement along the

arc
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Then the value for each experimental reading can be compared to that of the integrated value

for the distance over the arc associated with the receiving transducer diameter

This may mean that attenuation, with d, is caused by the decreased range of azimuthal angles the
receiving transducer covers for increased separation distance between transducers. Additionally, this
may explain why the 3rd order symmetric mode declines slower at low azimuthal angles than the
2nd order antisymmetric mode for d =1 inch. Since the flux deviation for plane waves can be on
the order of 40 degrees for a composite material (ref. 128), this effect can not be overlooked for AU,

especially for situations utilizing small transducers separated by larger distances.

Ideas for More Advanced AU Modeling Efforts

Obviously, the modeling mentioned above assumes the absolute ideal situation of a material with
a linearly elastic constitutive relation and no damage or inhomogeneities. Work on including the
effects of nonideal situations is still being developed for plane wave propagation, as was mentioned
in the second chapter. Since we understand basic modes of propagation, future work could include
introducing these considerations to the present understanding of AU results. It may be especially
important to include more complex effects to help model how damage may alter AU results. Since
little information in general exists concerning Lamb waves in anisotropic materials, models includ-
ing more advanced material behavior would most likely involve even further theoretical work.
Additionally, the already prohibitive calculations could very easily become totally impractical.
However, theoretical work could still be utilized to provide qualitative information and to develop

reasonable methods of approximation.
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Source Modeling

Also, possible improvements could be made by using finite element or finite difference to determine
radial variation of input disturbances for the composite plate for different azimuthal angles. This
could allow for inclusion of the plate geometry, the transducer size, and the spatial variation of the

transducer disturbance.

Geometric Effects

Another issue to be considered is that of geometry associated with the source and receiver. In this

regard, a host of drastic idealizations are involved with the present modeling of the AU method.

First, the sending transducer does not produce a perfect plane wave. In fact, it would probably be
more appropriate to model the source using cylindrical coordinates, such as was done for an
isotropic plate (ref. 140). Note, this analysis yielded a Bessel function solution which degenerated
to a plate wave type solution at distances far from the source. Although this analysis is not suited
for anisotropic materials, it may be advisable to at least note the I/r dependence of displacement

with distance from source.

Also, it should be noted that the receiving transducer is actually picking up disturbances associated
with a range of angles. This effect is especially large when the distance between transducers is small.
This practical difficulty along with angular variation of energy flux is consistent with the fact that
AU results show that the 1st order symmetric mode decreases much slower at small angles than the

2nd order antisymmetric mode.
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Time Domain Information

The prediction of the voltage/time signal for an aluininum plate has been accomplished utilizing a
variety of theorctical approaches. Towever, no such results exist for a composite material. Solving
this problem would provide an extremely useful tool for understanding more of the physics asso-
ciated with the AU results and make time domain calulations of wave velocities and calculation of

material properties more feasible.

The approach utilized by Vusedeven and Mal (ref. 129) provided results for the response for a source
on the face of an aluminum plate that resembled AU results. Their approach utilized the analysis
of Lamb wave equations to develop a fairly cfficient computational scheme. Tlowever, this ap-
proach has not been extended to anisotropic materials. Application of the exact approach is not
theoretically possible for an anisotropic material, however a variation of the approach may provide
an cventual means for developing a method to predict the voltage/time signal for a composite ma-
terial. Work of this type would most likely require a concentrated effort from researchers in a
number of arcas working together. A more practical approach may be to use a multi-transducer
configuration with AU to measure phase velocitics and group velocitics and usc this and spectral
information to reproduce dispersion curves for use in NDE (refs. 12 and 13). Hence, a single
measurcment could be used 1o reproduce a whole section of a dispersion curve. However, this
approach would involve a great deal of instrumentation and other developments that would require

years of work.
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Relating AU to Damage Modeling (NDE)

A number of approaches could be used to relate AU results, AU modeling and damage modeling.
These ideas run from making very simple empirical relations to making very idealized, yet complex
energy arguments. A good middle ground for starting is to try to utilize how changes in mechanical
properties arise in both models. The real strength of the AU technique may be its interaction with
various material components on a high frequency scale and the attendant mechanisms for energy
loss or redistribution due to damage, imperfections, inhomogeneities, or general nonideal material

behavior.

First, the AU measurement may be utilized directly with the simple modeling procedure forwarded
by Poursartip and Beaumont (ref. 108). Application of the AU mcthod with this model simply
involves making empirical relations between AU measurements as a function of fatigue cycles and
failure. The AU value has been shown to be more sensitive than the stiffness measurement as a
means of tracking damage (ref. 88). This is dLle to the large effects of damage on the high frequency
waves associated with the AU method. But, the mechanical understanding of the effects of damage
on the wave propagation are not nearly as developed as the understanding between damage and
stiffness change. Therefore, at present the use of the AU value in the model would be totally ad
hoc. However, future developments with models such as the one being developed here may change
this. In fact, the model presented posesses the possibility of obtaining stiffness information and
may be further developed to include the effects of damage on AU values through changes in

stiffness, damping, reflections, scattering, etc..

Stress redistribution and concentration is one area where the AU method shows promise of relating
to the critical element model, especially with an understanding of the stress states associated with
Lamb waves. Eventually, the variation of AU with azimuthal angle may be utilized to give local

values for FZ(n). Thus, it may be possible to obtain information on impending failure modes and
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stress concentrations by noting how the local stress state or displacement ficld for Lamb waves is
modified by damage in a material. In other words, the AU method may possess the ability to map
the way a given type of displacement (eg. longitudinal and shear) are distributed in a local region
of material. The exact relations between how the redistribution of stress for a high frequency Lamb
wave and fatigue loading is not directly clear. However, starting with this model of wave propa-
gation for the AU method, work can be geared toward deriving the elasticity problem that would
produce the results given for stress state changes of the AU waves. At the very least, the AU results
may be utilized to understand how damage is controlling mechanical behavior at various aziinuthal

angles.

In this vein, research has already been conducted by Duke and Kiernan (refs. 70 and 100) to utilize
the varation of AU with azimuthal angle to predict the direction of damage growth in composite
materials that are impacted with a steel ball. This work has shown that damage shows some

tendency to grow in directions of high AU.

Effects of damage on AU results for some directions has been noted (refs. 102 and 130). How
certain types of damage states interact with material motion may yield a means of identifying certain
damage modes and additionally assessing their mechanical effects. IHowever, caution should be

used in relating the mechanical behavior of a high frequency stress wave to other forms of loading,

Also, it has been noted that localized impact damage has even caused AU measurements to increase
in some directions (perhaps due to redirection of reflected energy) this could perhaps help to cal-

culate stress concentration factors.

In general, the present physical understanding of how material properties affect AU results provides
understanding of certain AU results and paves the way for utilizing the AU technique to determine
material properties, thus providing information for usc with damage models. Information may also

be obtained on other energy dissipating and redistribution mechanisms for use in damage modcls.
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It may involve a good deal of future work to reach this level of understanding, but the present

groundwork at least provides a starting point for rescarch cfforts.

Although the present modeling efforts are rudimentary, they provide a building block for utilizing
the physical undcrstanding, obtained through experiment, to develop advanced models for NDE
applications. The first major problem in this effort is the computing difficultics associated with the
composite material AU modeling. Unfortunately, the inclusion of more advanced models would
only compound this problem. Perhaps improved computer technology will lessen this problem.
In any case, by relating AU models to material properties, it is hoped that further rclations may

be made to prediction models of material failure, due to things such as fatigue.
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Conclusions and Overview

The AU method has proved to be a viable NDT technique in a wide varicty of laboratory studies
(refs, 4,6, and 103). Presently, the need exists to usher the method into practical real world appli-
cations. For this to take place, rescarch on the AU mcthod has to extend beyond feasibility studies.
As mentioned, a primary need has been a more sound physical basis for AU results. In fact, prior
to this dissertation, no general physical explanation for AU results in composite materials had been
offered. The theoretical methods most often used for understanding results in aluminum plates are
impractical and in most cascs impossible to apply to composite plates. Ience, it is the purpose of
this dissertation to provide a basic paradigm by which to understand the mechanics of the AU
method for composite materials. This stands to contribute to the application of the AU method

in the following ways:
Acceptance is based on physical understanding

Physical models allow forethought to be given to applications, so that proper instrumentation

is utilized and results can most approprately be interpreted

Physical models may make it possible to understand how certain forms of damage may effect

AU results
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Physical models can be used to interpret AU results in terms of the mechanical state of the

material, and hence lead to NDE applications - the ultimate goal of an NDT technique

Thus, this dissertation is viewed as a building block in the maturation of the AU method into an

NDI: technique.

Experimental Work

A basic ingredient of this work is the use of experimental results to guide physical understanding
and to validate theoretical predictions. In fact, a large part of the contribution of this work is the
painstaking mecasurements made to obtain the experimental results presented in chapter 4. More-
over, it is hoped that the experimental results presented here will provide the basis for more ad-

vanced modcls and increased basic physical experimentation.

Physical Understanding

The basis of the physical understanding of the AU method was the identification of higher order
I.amb waves as the dominant mode of wave propagation. This involved comparing velocity
measurements and frequency content of AU measurements to Lamb wave theory predictions.
Additionally, the variation of the input disturbance was shown to affect AU results. An elasticity
solution was utilized to account for the angular dependence of the radial disturbance for a point
force input. The radial variation of stress was then input to the Lamb wave solution. The fre-
quency content of the input was also shown to affect AU results and was accounted for by multi-

plying the output spectruin by a frequency dependent weigliting function.
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Current physical understanding of the AU method provides a means for explaining experimentally
observed bechavior of AU signals for composite materials, including the way certain components

of the signal vary with azimuthal angle.

One major contribution here is the identification of what type of motion each frequency component
belongs to and what waves or partial waves cause that motion. This helps understand phenomena
such as why the .234 M1z signal content is of a high energy value in the 90 degree direction for the
24 ply panel. This explains the slight increase scen in the overall energy content of the AU signal

at 90 degrees from lower values at 80 degrees (refs. 99 and 130).

Also, the high radial disturbance for high angles in the fiber direction explains the large signal con-
tent in the beginning of the signal for the zero degree direction, due to the higher group velocity.
Specifically, the fact that the fiber direction causes more energy to be directed at higher angles, re-
sults in more energy being present at higher wavenumbers where the group velocity is of higher
value. The shape of the dispersion curve and cnergy flux also contribute, along with the higher
input energy, to the large Al in the fiber direction. Also, this provides a means for rclating how
the high modulus of the fiber pulls energy from the 15 degree direction, and hence causes such high

attenuation between the 1 and 2 inch distance for the 3rd order symmetric mode.

Additionally, the fact that the phase velocity is given by circular frequency over wave number ex-
plains why the higher frequency waves have higher phase velocity values than the lower frequency
waves. Thus, if one assumes the wave numbers are comparable, then the phase velocities should
be roughly the same ratio as the frequencies. This agrees with the experimental data for all the wave

components that are identified as higher order Lamb waves.

This physical description also provides a means for understanding certain aspects of the problem
with reproducibility.  Specifically, the fact that the major mode of propagation seems to be waves
that are excited by stress waves sent off at just slightly off the normal means that a slight cantor of

the transducer (just a matter of a couple of degrees) could drastically effect how much energy is sent
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in a given direction. This could explain the noted observation that the larger transducers cause
much more repeatable results than the smaller transducers- due to the more stable state of a large
diameter transducer. Moreover, this obviates the fact that repeatibility is most difficult in the fiber

direction- due to the fact that even more of the energy content is drawn in from the large angles.

Finally, the Lamb wave analysis provides a means of analyzing how damage and certain material
states may interact with wave motion. For instance, the stress state of a given Lamb wave mode
can be compared to known effects of damage on stress. Thus, a delamination could be treated as
a stress free boundary and then a wave could be excited that possessed a nonzero stress for that
position. Next, a Lamb wave could be excited that possessed the proper boundary condition or
most nearly (ie. the major stress field for that mode satisfy the boundary condition). Unfortunately,
existing data for the delamination signal contained two modes where the major stress met the stress
free boundary of the delamination. However, these waves were still severely attenuated. Finally,
it is interesting to note that the initial application of the AU method involved determining shear
strength by using measurements in the 90 degree direction of unidirctional panels (ref. 4). The re-
sults of this work, combined with the physical explanation would predict that the dominant mode
in this case would be the 1st order antisymmetric mode. For the low wave number results seen in
experiments, this would show a wave that produced mainly shear stress in the direction the wave
was sent. Hence, the high resin areas that weaken the shear strength would also cause damping
of the shear stresses caused by the antisymmetric wave. Thus, the physical explanation forwarded
may be utilized in the future to identify the proper AU parameter to analyze, for a given type of

damage assessment and strength evaluation.

The importance of the damage position relative to the source must also be stressed. If the damage
is so close to the source that the Lamb wave is not yet excited, then attention should be centered
on how the stress waves emanating directly from the source may interact with the damage and how
that may affect the resulting Lamb wave. This again relates to the “grey area” of the geometry

problem associated with the region needed for the input plane waves to reflect and interact suffi-
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ciently to cause Lamb waves. In general, the physical interpretation of the AU method must

acknowlege the importance of the source and the area close to source in AU results.

Implementation of AU

The implementation of the AU technique requires that reproducible, quick, inexpensive, and in-
formative measurements can be made on materials that are in structures. In order to achieve these

objectives, a number of advancements need to be made in separate arcas.

Practical Difficulties

A number of practical difficultics necd to be solved before the AU method can be fully utilized.
These involve simple type of concerns that need 1o be accounted for in transforming the lab ex-
periments into a working field method. Hopefully, some of the problems which may arise in this

transformation may be alleviated by the physical understanding forwarded in this dissertation.

First, the digital calculations used in these experiments are too slow for many real applications.
owever, an RMS voltmeter and a specificd filter may be utilized to obtain the energy of a specified
mode that would give the proper information. Obtaining the right experimental hook-up could be

expedited by using calculations from the physical understanding forwarded in this dissertation.

One practical difficulty of the AU method is the reproducibility of results. The major reason is that
a slight reorientation in the direction of the transducer face drastically changes the energy input for
the dominate angles secn in the AU signal. Another problem in this regard is the couplant. The

solution to this problem involves utilizing new experimental techniques and transducers, perhaps
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laser excitation. However, laser input is not very easy to characterize. In any case, a great deal of
attention needs to be given to viable sources and sensors. Also, complementary efforts should be

directed toward characterizing these sources and their mechanical interaction with materials.

In order for the AU method to receive mass utilization, the results nced to be standardized and
must lead to eady interpretation. Although, early application of the method on thin specimens in-
dicated that a low AU energy value correlated to a low strength, the application of this idea to more
complex geometries of higher dimension with different material properties in different directions
causes this type of interpretation to become difficult. For instance, the effect of impact damage
has caused the AU energy to be redirected in certain directions, so that the AU energy was even
higher in these directions after damage than before, however, it may not be correct to interpret the
material as being stronger. Generally, damage may either attenuate or reflect energy- physically
understanding wave motion helps to interpret results of these mechanisms for help in standardi-

zation of the AU method.

One solution to the standardization and interpretation problem is to continue trying to relate the
mechanics of the AU technique to the mechanics of damage models. For instance, arrayed
transducers may be able to note a very localized alteration in directional material properties by
measuring Lamb wave velocities. This may then be compared to predicted changes by damage
models or conversely the material properties could be fed into damage models. Also, more effort
can be directed at relating actual energy attenuation in the AU signal to damage and then this in-
formation to damage model. Ultimately, only with increased modeling and computations can the

AU method be united with damage models to yicld usable NDE methods for general application.
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Instrumentation

A number of the problems which exist with the AU method may be solved by modifying instru-
mentation for specific applications. IHence, a good deal of research needs to be directed at devel-
oping new AU systems. The following serve as a list of instrumentation that neceds to be

developed:
Develop a system with RMS meter and capabilities for gating and filtering signal

Develop system for more repeatible characterized input that does not require a laborious op-

erator procedure

Develop a system that has a number of arrayed and multiplexed transducers that yields time

domain , frequency domain, and amplitude results
Develop real time computer analysis capabilities

Obviously, this is only a partial list of possible ideas for developing the experimental means to use
the AU for real world applications. Hopefully, further ideas and work in this arca will spawn from

the physical understanding of the AU method developed above.

Advanced Applications

Smart skins is one of many advance technologies that may benefit from progress being made in the
AU field. The basic goal of smart skin technology is to be able to simulate, for aircraft wings, the
activities of the central nervous system in human beings. Work in this area is focusing on the use

of optical fibers embedded in materials to sense the vibration of the material and to show damage
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when the fiber is broken. Also, a good deal of concentration is centered on the great computational

effort associated with all the information.

AU may provide a way for checking the integrity of the material where there are not fibers, since
it would be highly impractical to have the optical fibers everywhere. In particular, a source, such
as KYNAR film, could be embedded at one location and the optical fiber at another location could
act as the receiver. Thus, the components could act to perform an in-situ AU test that could serve
the smart skin function of sensing pain from an abnormality in the material. Depending on the
sophistication of the software utilized, the severity of the damage, the location, and other variables
could be accounted for in order to make certain decisions and to give as much information as

possible. In general, the AU method may find a niche in the smart skin technolgy.

Future Work

The basic physical model based on the elasticity solution, TTTR, and Lamb wave analysis opens
many doors for directions to complement this work and to further develop the AU method. A

partial list of future areas for possible research work includes:

Study of interdependence of parameters used in physical model

Develop self contained and efficient codes of computer model

Develop more complex models including effects of damage on wave dispersion and energy

dissipation

Use FE or FD to model the disturbance input by the transducer
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Try to apply Vusedevan and Mal’s approach, used on isotropic Lamb wave equations, to

anisotropic materials

Try to make predictions on which modes and which directions might be more affected by

various types of damage and to perform experimental validation

Use the model to develop better experimental set-ups

Do the full calculation of how AU varies with azimuthal angle including the effect of energy

flux (this will require using a lot of computer time on a super computer)

Alter model for use with other and more general experimental arrangements

Develop application of AU to smart skin technology

More work should be devoted to understanding the behavior of unidirectional panels at 15

degrees, this may help find and evaluate fiber breaks

Expand analysis to more general laminates

Do fatigue test work and really try to correlate AU results and critical element model

All of these issues are topics that could be explored in great detail and would undoubtedly con-
tribute to the AU method and associated technology. In general, a great number of areas exist for
further research on the AU method, due to the newness of the method and its importance to new
technologies. Furthermore, now that the AU NDT method for composite materials has shown
experimental merits and a physical understanding of results exists, wise choices for further research

areas and proper approaches can be made.
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Closing Remarks

A wealth of information is present in the AU signal. This information may be especially helpful,
when consideration is given to the variation of the AU signal with azimuthal angle for composite
materials and the great variation in local composite material state. Past research efforts have relied
on hit or miss experiments and complex signal analysis schemes to obtain as much information as
possible from AU analysis of composite materials. The physical understanding and modeling ef-
forts of this disertation are meant to add order to the search to obtain as much information as

possible from AU results.

The physics and wave propagation associated with this work are interesting in their own right. It
is interesting to note the great deal of information which can be ascertained from Lamb wave
analysis. Furthermore, it is fascinating to experimentally observe behavior qualitatively and
quantitatively predicted by analyzing dispersion curve information. This dissertation confirms the
usefulness of conventional theoretical tools for understanding experimentally observed wave mo-
tion. Also, this work points out the physics associated with the AU results in composite materials.
The physics shows the complex situations associated with trying to understand the basic mechanical
behavior of composite materials. Hopefully, this understanding may be of use in other areas of

research associated with composites.

This work highlights how source characteristics (frequency, orientation, etc.) and experimental ar-
rangement control waveguide effects, since all of these influence acoustic emission results, the same
complexities involved in AU analysis should be considered in understanding acoustic emission re-
sults. For instance, researchers in acoustic emission should be aware of the effects the orientation
of the AE source may have on what waves are set-up. Additionally, it points out the importance

of the receiver orientation (azimuthal angle) relative to the emission source on what results are de-
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tected by the receiver. Also, it suggests that damage in the material between the acoustic emission

and the receiver may affect results.

In closing, the AU method shows promise as a means of assessing the quality of composite mate-
rials. With increased understanding of the physics associated with AU results, such as given here,
the application of the AU method for composite materials may further contribute to efforts to
nondestructively evaluate these materials in real applications. Thus, the purpose of this dissertation
is to contribute, through experimental data and wave motion analysis, a physical
understanding/model of the AU method for the purpose of developing a refined AU method for

use with advance composite material systems.
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k*kx*program to compute variation of disturbance *¥tk¥xix
«xkkkyith angle theta as a result of force on a compos1te*******
kkkk*half space in fiber and cross fiber direction *okdokokok
CHARACTER*12 DIFF
COMPLEX A({2),B(2),C(2),0(2),U(2),V(2),56P(2)
DIMENSION S(6 6), RL(Z) SG(Z) AM P( )
WRITE(*,*) " FILENAME FOR OUTPUT"
READ{*,*) DIFF
OPEN (UNIT-9,FILE-DIFF)
PI=3.1456
E1=21.E6
E2=1.4E6
Vi2=.3
G12=.85E6
G23=.5E6
V23=.5*E2/G23-1
V21=E2/E1*V12
V13=V1i2
E3=EF2
$(1,1)=1/E1
S(1,2)=-V12/E1
$(1,3)=-V13/E1
$(2,2)=1/E2
${2,3)=-V23/E2
$(3,3)=1/£3
$(4,4)=1/G23
$(5,5)=1/G12
§$(6,6)=1/G12
DO 30 IF=1,6
D0 25 1J=1,6
WRITE(*,*) S(IF,1J)
25 CONTINUE
30 CONTINUE
A(1)=CMPLX(S(1,
B(1)=CMPLX(-(2.
C(1)=CMPLX(S(3,
A(2)=CMPLX(S(2,
B(2)=CMPLX(-{2.
C(2)=CMPLX(S(3
D(1)=CSQRT(B(1 MPLX(4.,0.)*A(1)*C
D(2)=CSQRT(B(2 MPLX(4.,0.)*A(2)*C
U(1)=CSQRT((-B
U(2)=CSQRT((-B
V(1)=CSQRT((-8B
V(2)=CSQRT((-B
DO 100 I=1,9
K=I-1
RK=FLOAT(K)
REK=RK*PI/180.
CS=COS(REK)
SN=SIN(REK)
WRITE(*,*) CS,SN
RL{1)=S(1, 1)*SN**4+(2 *5(1,3)45(5,5) ) ¥SN**2*CS5**2
+45(3,3)*CS**4
RL(2)=S{2,2)*SN**4+(2.*S({2,3)+S(4, 4) ) *SN**2*(S**2
++5(3,3)*CS**4
WRITE(*,*) RL(1),RL(2)
SGP(1)=U(1)+V(1)
SGP(2)=U(2)+V(2)

(
)/(CMPLX(Z 0. )*A(%
)/ (CMPLX(2., 0. Y*A(2
g;(CMPLX(Z ,0. )*A(;

:)
3
)
,§)+S(4 +4)),0.)
]
I
2))/(CMPLX(2.,0.)*A(

— e () )

1
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SG(1)=SGP(1)
SG(2)=56P(2)
SG(1)=SG(1)*(S(1,1)*5(3,3))**.5%CS*CS/RL(1)
$G(2)=SG(2)*(S(2,2)*S(3,3))**.5*CS*CS/RL(2)
IF(I.EQ.1) AMP(1)=S6(1)
IF(1.EQ.1) AMP(2)=SG(2)
SG(1)=SG{1)/AMP(1)
SG(2)=SG(2)/AMP(2)
WRITE(9,90) RK, SG(1), SG(2)

90 FORMAT(3E18.5)

100 CONTINUE

990 STOP

995 END
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CHARACTER*12 DIFF
COMPLEX A(2),B(2),C(2),D(2),U(2),V(2),56P(2)
DIMENSION S(6,6),55(6,6),6L(3),TL(4,3),EM(3),
WRITE(*,*) " FILENAME FOR OUTPUT"
READ(*,*) DIFF

OPEN (UNIT=9,FILE=DIFF)
PI=3.1456

El=21.E6

E2=1.4E6

Vi2=.3

G12=.85E6

G23=.5E6

V23=,5%E2/G23-1

V21=E2/E1*V12

V13=VI2

E3=E2

$S(1,1)=1/E1

$S(1,2)=-V12/E1
§5(1,3)=-V13/E1

$5(2,2)=1/E2

$5(2,3)=-V23/E2

$5(3,3)=1/E3

$S(4,4)=1/623

$5(5,5)=1/G12

$5(6,6)=1/612

WRITE(*,*) "INPUT AZIMUTHAL ANGLE’
READ(*,*) AZ

DO 200 ITH=1,90

TH=FLOAT{ITH)

DATA AR(6,6)/36%0./

SN=SIN(AZ)

£5=C0S({AZ)

AR(1,1)=CS**2

AR(1,2)=SN**2

AR(1,6)=CS*SN

AR(2,1)=SN**2

AR(2,2)=CS**2

AR(2,6)=-SN*CS

AR(3,3)=1.

AR(4,4)=CS

AR(4,5)=-SN

AR(5,4)=SN

AR{5,5)=CS

AR(6,1)=-2.*SN*CS
AR(6,2)=2.*SN*CS
AR(6,6)=CS**2-SN**2

DO 10 I=1,6

DO 10 J=1,6

DO 10 M=I1,6

DO 10 NeI,6
S(1,J)=SS(M,N)*AR(I,M)*AR(J,N)

10 CONTINUE :
SA=S(1,1)
SB=-2.*S(1,6)
SC=2.*S(1,6)+5(6,6)
SD=-2.*§(2,6)
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SE«$(2,2)
SF=S(5,5)
SG=-2.¥5(4,5)
oy oSl 4
S1=S(1,5)
SJ=-(5(1,4)+5(5,6))
SK=5{2,5)+5(4,6)
SL=-5(2,4)
TA=SA*SF-SI*S]
TB=SB*SF4+SA*SG-2.*ST*SJ
TC=SC*SF+SB*SG+SA*SH-SJ*SJ-2. *ST*SK
TD=SD*SF+SC*SG+SB*SH-2, *SK*SJ-2, *SL*ST
TE=SE*SF+SD*SG+SC*SH-2 ., *SJ*SL-SK*SK
TF=SE*SG+SD*SH-2. *SK*SL
TG=SE*SH-SL*SL
A=TB/TA
B=TC/TA
C~TD/TA
D=TE/TA
E=TF/TA
F=TG/TA
AR AGAAAGANAAAGAA Y%A S%CALL SUBROUTINE OR INPUT USING SEPARATE SOUR!

WRITE(*,*) A,B,C,D,E,F
D0 20 Isl,3
WRITE(*,*) "PUT IN MU VALUES"
WRITE(*,*) 1
READ(*,*) EM(I)

20 CONTINUE
DO 30 I=l,3
TL(2,1)=SF*EM(1)**2+SG*EM(1)+SH
TL(3, 1)=ST*EM{1)**3+SI*EM(1)**2+SK*EM(1)+SL
TL(4,1)=SA*EM{T)**4+SB*EM(T)**3+SCEM(1)**2+SD*EM({1)+SE

30 CONTINUE
GL(1)=-TL(3,1)/TL(2,1)
GL(2)=-TL(3,2)/TL(2,2) -
GL(3)=-TL(3,3)/TL(4,3)
CA=EM(3)*GL{2)*GL(3)-EM(2)
CB=EM(1)-EM(3)*GL(1)*GL(3)
CC=EM(2)*GL(1)-EM(1)*GL(2)
AT=COS (TH)+EM(1)*SIN(TH)
AB=SIN{TH)-EM(1)*COS(TH)
BT=COS (TH)+EM(2) *SIN(TH)
BB=SIN({TH)-EM(2)*COS(TH)
CT=COS(TH)+EM(3)*SIN(TH)
CB=SIN({TH)-EM(3)*COS(TH)
SRA=CA*AT**2/AB+CB*BT**2/BB+GL (3)*CC*CT**2/CB
SRB=GL (1) *CA*AT/AB+GL (2) *CB*BT/BB+CC*CT/(B
SR=-COS{TH)*REAL (CMPLX (0. ,1.)*SRA)
TR=-COS (TH)*REAL (CMPLX (0. ,1.)*SRB)
WRITE(*,*) TH,SR,TR

200 CONTINUE
STOP
END
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c*¥**¥*Program to compute dispersion curves, displacements *akwsisx
cx**k*for an isotropic material Fkkkdkkkk
C DIMENSION AM(300),8BM(300),ZTM(300),CCM{300)
C DIMENSION BBM(300),0MM(300),RVM{300)
CHARACTER *12 DISC, DISS, DIFF
WRITE(*,*) " FILENAME FOR OUTPUT"
READ(*,*) DIFF
OPEN (UNIT=9,FILE=DIFF)
WRITE(*,*) " INPUT I=]1 FOR SYMM. I=-1 FOR ANTI, "
READ(*,*) K
REK=FLOAT (K)
IFF=1
VP=250000.
D=.0625/2.
VS$=120000.
IF(K.EQ.1) VR=.7%*VS
IF(K.EQ.-1) VR=,95%VS
C###4LOOP TO VARY OMEGA (FREQUENCY VALUE) #RHARAER
NOZ=1
NOT=100
DO 200 NZT=NOZ,240
IT=NIT/2.0
10V=0
IF(K.EQ.-1) NOT=IFIX(VR*ZT*.001)-3
IF(K.EQ.-1) GO TO 25
IF(IFF.EQ.1) NOT=IFIX(VS*ZT*,001)+1
IF(IFF.EQ.0) NOT=IFIX(VR*ZT*.001)-3
25 CONTINUE
DO 80 NOMG=NOT, 1000000
V=0
10V=0
OMG=NOMG/0.0001
IF(K.EQ.-1) OMG=(NOT-(NOMG-NOT))/.001
IF(K.EQ.-1) GO TO 28
OMG=NOMG/ . 001
28 CONTINUE .
OMG=NOMG/ . 000001
$$5$ LOOP TO FIND VALUE FOR ZETA IN DISPERSION EQNS. $$$$$
2T=NZ7/10000.0
1T=N7T/100.0
IT=NIT
ITT=1T%*2
DVP={OMG/VP)**2
DVS={0OMG/VS)**2
RV=0MG/ZT
WRITE{*,*) RV
IF (DVP.GT.ZTT) GOTO 35
IF (DVS.LT.ZTT) GOTO 33
C 1FG=1
WRITE(*,*) "VP<RV>VS"
A=(ZTT-DVP)**.5
B=(DVS-ZTT)**.5§
BD=B*D
AD=A*D
EAP=EXP(AD)
EAN=EXP(-AD)
EBP=EXP(BD)
EBN=EXP(-BD)
WRITE(*,*) EAP,EAN
IF (EAP.EQ.EAN) GO TO 40

(N e Rl

OO0
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F={EXP({-AD)+EXP(AD)}/(EXP(-AD)-EXP(AD))*TAN(BD)
+REK*{ (4. *A*B*ZTT)/ (ZTT-B**2)**2)**K
GO TO 40
33 WRITE(*,*) "Rv<Vs™
o IFG=2

A=(ZTT-DVP)** .5
B=(ZTT-DVS)**.5
AD=A*D
8D=B*D
EAP=EXP(AD)
EAN=EXP(-AD)
EBP=EXP(BD)
EBN=EXP(-BD)
F={ (EAN+EAP)/(EAN-EAP))*( (EBN-EBP)/ (EBN+EBP))
+-((4.*A*B*ZTT)/ (ZTT+B**2)*%2)**K
GO TO 40
35 WRITE(*,*) "RVS>VP"
C 1FG=3
A=(DVP-ZTT)**.5
B=(DVS-ZTT)**.5
AD=A*D
BD=B*D
F=TAN(BD)/TAN(AD)
+4( (4. R*BXTTT)/ (ZTT-Br*2)*H2)%xK
C***SECTION TO DECIDE IF DISPERSION COND. IS MET
40 CONTINUE
WRITE(*,*) NOMG, NIT, F
IF (IFG.EQ.IOFG) GO TO 45
IF (NOT.EQ.NOMG) GO TO 45
10V=0
60 TO 75
45 CONTINUE
IF (F.LT.0.00005.AND.F.GT.-.00005) GO TO 85
IF (F.GT.0.0) IV=l
IF (F.LT.0.0) IV=-1
50 1IV=IV+IOV
WRITE(*,*) IV, IOV, IIV
IF(1IV.EQ.0) GO TO 85
10V=1V
C 75 I0FG=IFG
80 CONTINUE
85 IF (NOMG-NOT.LT.3) IFF=0
IF (K.EQ.-1) GO TO 100
C SSESEssssssssssssrssssssssssssssssssssssssssssssss555555555558S
IF(DVS.LT.ZTT) GO T0 95
IF(DVP.LT.ZTT) GO TO 90
BB=-2,*ZT*B*C0S(BD)
CC=(ZTT-B**2)*C0S (AD)
GO TO 150
90 BB=-2.*ZT*B*C0S(BD)
CC=(ZTT-B**2)*(EXP(-AD)+EXP(AD))/2
GO TO 150
95 BB=-ZT*B*(EXP(-BD)+EXP(BD))
CC=(ZTT+B**2)* (EXP(-AD)+EXP(AD))/2.
GO TO 150
C****AREA FOR ANTI. kA kR
100 CONTINUE
IF (OVS.LT.ZTT) GO TO 110
IF (DVP.LT.ZTT) GO TO 115
AA=2 . *ZT*B*SIN(BD)

OO0
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DD=(ZTT- B**Z)*SIN(AD)
G0 T0 150
110 AA=2.*IT*B*SIN(BD)
DD=(ZTT- B**Z)*(EXP( AD)-EXP(AD))/2.
G0 TO 150
115 AA=ZT*B*(EXP(-BD)-EXP(BD))
: DD=(ZTT+8+%2)* (EXP(-AD) - EXP(AD))/Z.
CH***AREA FOR ANTI.
150 CONTINUE
AM(NOMG) =A
BM(NOMG) =B
CCM(NOMG)=CC
BBM(NOMG)=BB
ZTM(NOMG)=ZT
OMM { NOMG ) =OMG
RVM(NOMG ) =RV
FREQ=OMG/ (2. *PI)
WRITE (9,160) ZIT,OMG
WRITE (9,160) A,B
IF (K.EQ.-1) GO TO 155
WRITE (9,160) BB,CC
60 TO 200
155 WRITE (9,160) AA,DD
160 FORMAT ( 2€18.6)
200 CONTINUE
CREARARRAREARARABRERAAR AR AR IR ERRA RN RBERRRRR R AR IS
C****THIS SECTION WRITES DISPERSION INFORMATION INTO
C** AN OUTPUT FILE
C*
C WRITE(*, *) n FILENAME FOR DISP OUTPUT? "
C  READ(*,*)'D
C 250 OPEN (UNIT=7 FILE DISC)
C DO 290 I=1,300
¢ IT=ZTN(I)
c
C

OO

OMG=OMM( 1)
WRITE(7,260) ZT, OMG
C 260 FORMAT( 2E15.7)
C 290 CONTINUE
CH**THIS SECTION CALCULATES AND STORES DISPLACEMENTS
Cr*xx AS A FUNCTION OF ZETA OR THE WAVE NUMBER
C***+ IN THE DIRECTION OF PROPAGATION
WRITE(*,*) " FILE NAME FOR U2 OUTPUT? "
READ(*,*) DISS
WRITE(*,*) “ WHERE DO YOU WANT U2 CALCULATED?
READ(*,*) XT
300 OPEN (UNIT=8,FILE=DISS)
DO 380 J=1,300
A=AM(J)
B=BM(J)
BB=BBM(J)
CC=CCM(J)
BCM=(BB**24+(C**2)** 5
IT=1TH(J)
OMG=0MM(J)
RV=RVM(J)
AX=A*XT
BX=B*XT
IF (RV.LT.VS) GO TO 340
IF (RV.LT.VP) GO TO 330
UTT=(-BB*A*SIN(AX)+CC*ZT*SIN(BX))/BCM

O™ OOOOOOO0O
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GO TO 350
330 UTT=(-BB*A*(EXP(-AX)-EXP(AX))/2+CC*ZT*SIN(BX))
+/BCM
GO TO 350
340 UTT=(-BB*A*(EXP(-AX)-EXP(AX))/2+CC*ZIT
+*(EXP(-BX)-EXP(BX))/2)/BCM
350 CONTINUE
WRITE(8,360) OMG, UTT
360 FORMAT { 2E18.7)
380 CONTINUE
990 STOP
995 END

ek inininininle]
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CawwxxxCALCULATES DISPLACEMENT VERSUS FREQUENCY
Crxx**xCAL CULATES PHASE VELOCITY VERSUS FREQUENCY
C*#*+kkFOR AN ISOTROPIC MATERIAL FROM (DISA.FOR} PROGRAM
C***WRITES DATA TO OUTPUT FILES FOR USE IN PLOTTING

C

C
C  DIMENSION AM(300), BM(300), CCM(300), ZTM{300)
€ DIMENSION OMM{300),MVM(300)
CHARACTER *12 DISC, DDSC, DPHV, DISS, DISP
WRITE(*,*) "READ FILENAME? "
READ(*,*) DISC
WRITE(*,*) "FILENAME FOR DISPLACEMENTS? "
READ(*,*) DDSC
WRITE(*,*) "FILENAME FOR PHASE VELOCITIES? "
READ(*,*) DPHV
OPEN (UNIT=5,FILE=DISC)
WRITE(*,*) "FILENAME DISPERSION CURVE? "
READ(*,*) DISP
OPEN (UNIT=7,FILE=DISP)
WRITE(*,*) "IS THIS FOR 1)SYM 2)ANTI.? "
READ(*,*) ISY
WRITE(*,*) " WHERE DO YOU WANT U2 CALCULATED? "
READ(*,*) XT
C
CH***SYMM. U2 CALC.
C
C
OPEN (UNIT=9, FILE=DPHV)
OPEN (UNIT=8,FILE=DDSC)
PI=3.1456
DO 200 1=1,300
READ(5,30) ZT,OMg
FRE=.000001*0MG/(2.*PI)
WRITE(7,60) ZT,FRE
READ(5,30) A,B
IF (ISY.EQ.2) GO TO 25
READ(5,30) BB,CC
GO TO 27
25 READ(5,30) AA,0D
¢ READ(5,30) VS, VP
27 CONTINUE
VP=260000
V$=110000
30 FORMAT { 2E18.6)
BCM= (BB**2+CC**2)** 5
PHV=0MG/ZT
AX=A*XT
BX=B*XT
ITT=1T%*2
DVP=(OMG/VP)**2
DVS=(OMG/VS ) **2
IF (ISY.EQ.2) GO TO 100
IF (DVS.LT.ZTT) GO TO 40
IF (DVP.LT.ZTT) GO TO 35
UTT=(-BB*A*SIN(AX)+CC*ZT*SIN(BX))/BCM
GO TO 50
35 UTT=(-BB*A*(EXP(-AX)-EXP(AX))/2+CC*ZT*SIN(BX))
+/BCH
GO TO 50
40 UTT=(-BB*A*(EXP(-AX)-EXP(AX))/2+CC*ZT
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+*(EXP(-BX) -EXP(BX))/2)/BCM
50 CONTINUE
UTT=({UTT**2)**_5
WRITE(8,60) FRE, UTT
60 FORMAT ( 2£18.6)
C*+*U2 VELOCITY CALCULATION
WRITE(9,65) FRE,PHV
65 FORMAT ( 2E18.6)
80 GO TO 200
C-SAEEANTISYMM. 88BAAEEAAAAAEALEEALEARAEAE

100 CONTINUE
EAP=EXP (A*XT)
EAN=EXP(-A*XT)
EBP=EXP (B*XT)
EBN=EXP(-B*XT)
IF (DVP.GT.2TT) GO TO 120
IF (DVS.LT.ZTT) GO TO 130
CVA=(EAN+EAP) /2.
CVB=COS (B*XT)
GO TO 140

120 CVA=COS(A*XT)
CVB=COS (B*XT)
GO TO 140

130 CVA=(EAN+EAP)/2.
CVB=(EBN+EBP)/2.

140 CONTINUE
UTT=AA*AXCVA+DD*2T*CVB
UTT=(UTT**2)*x 5
OMG=.,000001*0MG/ (2. *P1)
WRITE(8,60) OMG, UTT

C***U2 VELOCITY CALCULATION
WRITE(9,65) OMG,PHV

200 CONTINUE
STOP
END
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Cx****THIS PROGRAM DETERMINES THE DISPERSION RELATIONS FOR
Cr++*% AN ORTHOTROPIC MATERIAL WHERE THE WAVE IS SENT IN
Cr****THE DIRECTION OF MATERIAL SYMMETRY
DIMENSION C(6,6), D(6,6)
CHARACTER *12 DISC,DIVE
COMPLEX L(6),ALO(6),FF,DV,KK(4,4),ALT(6)
COMPLEX CI(6,6),DI(6,6),KA,KB,KC,KD,RKB, RNB
COMPLEX CMPLX,CEXP,CAC(3),DAD(3),CZ(4),CSQRT
1V=0
B=.024
© K0=1
PI=3.145
RHO=. 000151
C(1,1)=23.4E6
C(1,2)=.943E6
C(1,3)=C(1,2)
C(2,2)=2.1E6
C(2,3)=1.05E6
C(3,3)=2.1€6
C(4,4)=.527E6
C(5,5)=1.03E6
C(6,6)=1.03E6
WRITE(*,*) "WHAT IS THE NAME FOR OUT-FILE? *
READ(*,*) DISC
OPEN (UNIT=7,FILE=DISC)
WRITE(*,*) "WHAT IS THE NAME FOR VEL.-OUT? "
READ(*,*) DIVE
OPEN (UNIT=8,FILE=DIVE)
D0 300 NOMG=1,300
10V=0
ROMG=FLOAT (NOMG)
OMG=ROMG/ . 00002
OMG=ROMG/ . 00004
O0MG=ROMG/ . 00005
DO 200 K=KO0,3000000
RK=FLOAT(K)
WRITE(*,*) "OMG=,RK="
WRITE(*,*) OMG,RK
C  RK=RK/100.
RK=RK/1000.
RL=RHO*OMG**2/RK**2
WRITE(*,%) "RL«"
WRITE(*,*) RL
0(1,1)=C(1,1)-RL
D(6,6)=C(6,6)-RL
D(5,5)=C(5,5)-RL
CA##### WAVE NUMBERS FOR SH-MODES
L(5)=CSQRT(CMPLX(-D(6,6)/C(4,4),0.))
L(6)=-L(5)
CHERBRRERERRRERARARANRARNS
AA=C(5,5)*C(3,3)/1.E5
D0B=D(1,1)/1.E5
DFB=D(5,5)/1.E5
COFS=(C(1,3)+C(5,5))**2/1.E5
BB=-COFS+DOB*C(3,3)+DFB*C(5,5)
CC=D(1,1)*DFB
DV=CSQRT (CMPLX (BB**2-4. *AA*CC,0.))
CHH###WAVE NUMBERS FOR SV, P-MODES
L{1)=CSQRT( (CMPLX(-BB,0. )+DV)/CMPLX(2.*AA,0.))
L(3)=CSQRT((CMPLX(-BB,0.)-DV)/CMPLX(2.*AA,0.))

[Nl
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L{2)=-L(1)
L(4)=-L(3)
REERERHERARAREAAHY
00 50 I=1,4
RRLV=REAL(L(I))
RILV=AIMAG(L(I))
WRITE(*,*) I,RRLV,RILV
50 CONTINUE
DO 120 1J=1,6
D0 110 JI=1,6
CI(1J3,J1)=CMPLX(C(1J,J1),0.)
DI(1J,JI)=CMPLX(D(1J,J1),0.)
110 CONTINUE
120 CONTINUE
D0 150 J=1,4
ALO(J)=L{J)*(CI(1,3)+CI(5,5)
ALT(J)=-(DI(1,1)+L{I)*L{I)*C
WRITE(*,*) ALO(J),ALT(J)
ALO(J)=ALO(J)/1.E13
ALT(9)=ALT(2)/1.E13
150 CONTINUE
RKB=CMPLX (0. ,RK*B)
RNB=CMPLX(0. , -RK*B)
D0 170 J=I,4
KK(1,d)=(CI(1,3)*ALO(J)+CI(3,3)*ALT(J)*L(J))
+*CEXP(RKB*L(J))
WRITE(*,*) KK(1,J)
170 CONTINUE
DO 180 J=1,4
KK(2,Jd)=(CI(1,3)*ALO(J)+CI(3,3)*ALT(J)*L(J))
+*CEXP(RNB*L(J))
WRITE(*,*) KK(2,J)
180 CONTINUE
DO 185 J=I,4
KK(3,9)=CI(5,5)/CMPLX(2.,0.)*(L(J)*ALO(J)+ALT(J))

+*CEXP(RKB*L(J);
KK(3,d)=CI(5 ?;*(L(J)*ALO(J)+ALT(J))
(3,9)

)
1(5,5))

+*CEXP(RKB*L (J
WRITE(*,*) KK
185 CONTINUE
DO 190 J=1,4
KK(4,d)=CI(5,
+*CEXP(RNB*L (J

; JCMPLX(2.,0.)*(L(J)*ALO(J)+ALT(J))
KK(4,d)=CI(5,
+*CEXP(RNB*L(&

*(L(J)*ALO(J)+ALT(J))
WRITE(*,*) K

(
J)
190 CONTINUE
KA=KK{2,2)*(KK(3,3)*KK(4,4)-KK(3,4)*KK(4,3))
+-KK(2,3)*(KK(3,2)*KK(4,4)-KK(3,4)*KK(4,2))
++KK(2,4)* (KK(3,2)*KK(4,3) -KK(3,3) *KK(4,2))
WRITE(*,*) "KA="
WRITE(*,*} KA
KB=KK(2,1)*(KK(3,3)*KK(4,4) -KK(3,4)*KK(4,3))
+-KK(2,3)*(KK(3,1)*KK(4,4)-KK(3,4)*KK(4,1))
++KK(2,4)% (KK (3,1)*KK(4,3) -KK(3,3) *KK(4,1})
WRITE(*,*) "KB="
WRITE(*,*) KB
KC=KK(2,1)*(KK(3,2)*KK(4,4)-KK(3,4)*KK(4,2))
+-KK(2,2)*(KK(3,1)*KK(4,4)-KK(3,4)*KK(4,1))
++KK(2,4)*(KK(3,1)*KK(4,2) -KK(3,2)*KK(4,1))

5)
))
5)
))
(4
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WRITE({*,*) "KC="
WRITE(*,*) KC
KD=KK(2,1)*(KK(3,2)*KK(4,3)-KK{3,3)*KK(4,2))
+-KK{2,2)}*(KK(3,1)*KK(4,3)-KK(3,3)*KK(4,1))
++KK(2,3)*(KK(3,1)*KK(4,2)-KK(3,2)*KK(4,1))
WRITE(*,*) "KD="
WRITE({*,*) KD
FF=KK{1,1)*KA-KK{1,2)*KB+KK(1,3)*KC-KK(1,4)*KD
CKV=CABS(FF)
WRITE{*,*) "CKV="
WRITE(*,*) CKV
IF (CKV.LT.0.0001) GO TO 220
IF (CKV.LT.0.0010) GO TO 220
IF (K.EQ.1) GO TO 195
IF (CKV.GT.OKV) IV=]
IF (CKV.LT.OKV) IV=-1
TIV=1IV+I0V
IF {IIV.EQ.0) GO TO 220
195 I0V=IV
OKV=CKV
200 CONTINUE
220 CONTINUE :
CHEREE CALCULATE CZ CONSTANTS FHRERBERHE
DO 240 J=1,3 .
JP=J+1
CAC(J)=(KK{2,1)*KK(3,dP))/
DAD(J)=(KK{1,1)*KK(3,dP))/
240 CONTINUE
CZ(4)=1.
CZ(3)=((DAD{1)*CAC(3))/CAC(1)-DAD(3))
+/{DAD{2)-DAD{1)*DAD(2)/CAC(1))
CZ(2)=-(CAC{3)+CAC(2)*CZ(3))/CAC(1)
CZ(1)=(KK(3,2)*CZ(2)+KK(3,3)*CZ(3)+KK(3,4))/KK(3,1)
K0=K

WRITE(7,250) FR,OMG
VPH=0MG/RK
FR=0MG/ (2. *P1)
WRITE(8,250) FR,VPH
DO 245 J=1,4
WRITE(9,255) ALO(J),ALT(J),L(J)

245 CONTINUE
WRITE(9,250) €Z(1),CZ(2)
WRITE(9,250) €Z(3),CZ(4)

250 FORMAT( 2E18.6)

255 FORMAT( 3E18.6)

300 CONTINUE
STOP
END

PRI RN A A I ] (%]

IX}

<

KK(3,1)+KK(2,JP)
KK(3,1)+KK(1,JP)

(] OO M
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C*****THIS PROGRAM DETERMINES THE DISPERSION RELATIONS FOR
C****% AN ORTHOTROPIC MATERIAL WHERE THE WAVE IS SENT IN
C*****ANY DIRECTION DEFINED BY THE INPUT DIRECTION
DIMENSION C(6,6), D(6,6), CO(6,6)
CHARACTER *12 DISC
COMPLEX FF
COMPLEX RKB, RNB, CMD, CKD
COMPLEX CMPLX,CEXP,X(3)
COMPLEX Y{(3),TL(6),CM(3,3),AL(6,3),RKB,RNB
COMPLEX CEP,CEN,KK{6,6),CSQRT
V=0
CU%%%%%%B -HALF PLATE THICKNESS
CU%%%A%%%RHO -MATERTAL DENSITY
CUAUAAI%CO(1,J) -STIFFNESS MATRIX FOR ORTHOTROPIC DIRECTION
ID10T=0
V=0
B=.063
Ko=1
RHO=. 000151
€O(1,1)=23.4E6
€o(1,2)=.943E6
co(1,3)=C(1,2)
€0(2,2)=2.1E6
€0{2,3)=1.05E6
€0(3,3)=2.1E6
€0(4,4)=.527E6
€0(5,5)=1.03E6
€0(6,6)=1.03E6
PI=3.1456
c******** ROTATE STIFFNESS MATRIX e % Je Je T I Je 7 e e K v e e e e e de e I de vk K e ok I de ok ek e
¢ i
Crwrxkik INPUT ROTATION ANGLE (IE. DEFINE AZIMUTHAL ANGLE)
WRITE(*,*) "WHAT ANGLE DO YOU WANT FOR ROTATION"
READ(*,*) ANG
ANG=PI*ANG/180.
SN=SIN(ANG)
CSM=COS (ANG)
CF=CSM**4
CS=CSM**2
SF=SN**4
SS=SN**2
DO 25 I-1,6
DO 25 J=1,6
C(1,J)=0.0
25 CONTINUE
C(1,1)=C0(1,1)*CF+2.*CS*SS*(CO(1,2)+C0(6,6))
++€0(2,2)*SF
WRITE(*,*) €(1,1)
C(1,2)=CS*SS*(CO(1,1)+C0(2,2)-4.*CO(6,6))
++C0(1,2)*(CF4+SF)
WRITE(*,*) C(1,2)
- €(1,3)=C0(1,3)*C5+C0(2,3)*SS
WRITE(*,*) €(1,3)
C(1,6)=SNCSM*(CO(1,1)*CS-C0(2,2)*SS
+-(€O(1,2)+2.*CO(6,6))*(CS-SS))
WRITE(*,*) C(1,6)
€(2,2)=CO(1,1)*SF+2.*CS*SS*(CO(1,2)+2.*C0(6,6))
++00(2,2)*CF
WRITE(*,*) €(2,2)
€(2,3)=C0(1,3)*55+C0(2,3)*CS
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WRITE(*,*) €(2,3)

c(2, s)-csu*sn*(c0(1 1)*$5-C0(2,2)*CS
++{C0(1,2)+2.*C0(6,6) )*(CS-SS))

WRITE(*,*) C(2,6)

€(3,3)=€0(3,3)

WRITE(*,*) C(3,3)

C(3,6)=(C0(2,3}-C0{1,3) ) *SN*CSM
WRITE(*,*) C(3,6)
C(4,4)=C0(4,4)*CS+CO(5,5)*SS

WRITE(*,*) C(4,4)
C(4,5)=(C0(4,4]-CO(5,5))*SN*CSH
WRITE(*,*) C(4 5)

C(5,5)=C0(4, 4)*S5+C0(5,5)*CS

WRITE(*,*) C(5,5)
C(6,6)=(CO(1,1}+€0(2,2)-2.%CO(1,2) )*CS*SS
++C0(6,6)*(CS- 55)**2

WRITE(*,*) C(6,6

cxx%%zyywy%%%y%%c(x J)- ROTATED STIFFNESS MATRIXSSMIUIAIIUIIUNIINY

c***NAME OUTPUT F ‘ LE********************************

WRITE(*,*) "WHAT IS THE NAME FOR OUT-FILE? *

READ(*,*) DISC

OPEN (UNIT=7,FILE=DISC)

NOMG=1
CHARBURHASECTION L4###F#SECTION 1RERH##RHSECTION 1##F#4H4UAS
CeRREEDEFINE K-WAVENUMBER FOR VARIOUS POINTS ON DISPERSION CURVE

DO 500 K=1,240

RK=FLOAT(K)
CHHREND SECTION 1######4#HHNEND SECTION 1¥#RHRAARNIANE
CHEMFEHHSECTION 244444 HHHSECTION 2#FHARFASECTION 24RHHIRENER
C4%%DEFINE THE VALUE FOR NOONMMMMAAAAANLANLALAL,
CR@@@DEFINES WHERE THE PROGRAM STARTS LOOKING FOR THE SOLUTION
C@RRRWHICH MEETS DISPERSION CONDITION

c
NOO=NOMG
IF (K.EQ.1) NOO=1
10V=0

C

CAUNBRRARSECTION 3#HAHPHHHSECTION 3#RFHRFHNISECTION SR#HRR4ANS
C@REAEDEFINES THE OMG VALUE

C%%%%0MG-CIRCULAR FREQUENCY FOR WAVE

c

DO 400 NOMG=NOO, 99999999
ROMG=FLOAT (NOMG) :

c OMG=ROMG/ . 00002
0MG=ROMG/ . 002
c OMG=ROMG/ . 001
C OMG=ROMG/ .05
o
CRERERHHEND SECTION 3HA#A#RRAMIEHIREAREARERRRRRNAHARAR
c

WRITE(*,*) "OMG=,RK="
WRITE(*,*) OMG,RK
RK=RK/100.
RK=RK/1000.
RL=RHO*OMG**2/RK**2
WRITE(*,*) 'RL-
WRITE(*,*) R
FH#ESECTION 4##!##SECTION ARFHFHHSECTION ARFENREREAAE

OO [ Xwl
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CeREEESOLVE THE CHRISTOFFEL EQUATION FOR THE PARTIAL WAVES

CRREEGFIND THE WAVE NUMBERS

Crun%snns%TL (6) -WAVENUMBER RATIOS OF X-3 WAVENUMBER TO X-1 WAVENUMBER
C%%%FOR EACH SLOUTION

C
D(1,1)=C(1,1)-RL
D(6,6)=C(6,6)-RL
D(5,5)=C(5,5)-RL
XT=C(3,3)*D(6,6)+C(4,
YT=D(5,5)*C(4,5)+C(1,

+*(C(1,3)+C(5,5))
2=C(1,6)*(C(3,6)+C(
W=C(4,5)*(C(3,6)+C(
AE=C(3,3)*(C(4,4)*C
BE=XT*C(5,5)+D(1,1)*

4)*
6)*
4,5
4,5
(
+-C(4,5)*YT+W*(C(1, 35)_)
)
5,

T AN
—

CE=C(5,5)*D(6,6)*D(
+-C(1,6)*YT+Z*(C(1,3)+
DE=D(1,1)*D(6,6)*D(
P=BE/AE

Q=CE/AE

R=DE/AE

WRITE(*,*) "P Q R"
WRITE(*,*) P,Q,R
AS=(3.*Q-P*P)/3.

BS=(2. *P*P*P-9, *p*(+27 . %R)/27.
11=BS*BS/4 . +AS*AS*AS/27 .
WRITE(*,*) "ZI=", ZI
IF(Z1.€Q.0.) GO TO 50
IF(Z1.6T.0.) GO TO 55
IL=-(BS/2.)

WRITE{*,*) "ZL=", ZL
B=(-21}**.5

WRITE(*,*) "ZB=", IB
THT=ATAN(ZB/ZL)
IM=(ZB**2+7L**2)** 5
AT=THT/3.
BPA=ZM** . 333333%2, *COS(AT)
BMA=ZM**,333333%2, *SIN(AT)
X(1)=BPA
X(2)=-BPA/2.-BMA/2.%(3.)** 5
X(3)=-BPA/2.+BMA/2.*(3.)**.5
GO TO 65

50 CONTINUE

X(1)=-2.%(BS/2.)**.333333
X(2)=-X(1)/2.

X(3)=-X(1)/2.

GO TO 65

55 CONTINUE

7L=BS/2.

7B=SQRT(ZI)

BML=-ZL+ZB

BPL=ZL+ZB

QML=1.

QPL=1.

TIF(BML.LT.0.) QML=-1.
IF(BPL.LT.0.) QPL=-1.
BML=BML*QML

BPL=BPL*QPL

€ WRITE(*,*) "BEFORE"
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AB=QML* (BML)**, 333333

BA=QPL*( - (BPL)**.333333)
€ WRITE(*,*) "AFTER"

TRE=SQRT(3.)

X(1)=AB+BA

X(2)=-X(1)/2.+CMPLX( (AB-BA)/2.*TRE,0. }*CMPLX(0.,1.)

X(3)=-X{1)/2.-CMPLX({AB-BA)/2.*TRE,0.)*CMPLX(0.,1.)
65 CONTINUE

D0 75 I=1,3

Y(1)=X(1)-P/3.

WRITE(*,*) *1,Y(I)",1,Y(I)

75 CONTINUE

C

C****CALCULATE WAVE NUMBER RATIOS FOUND
C%%%%TL(1)-WAVENUMBER RATIO

c

DO 95 I=1,3
TL(1)=CSQRT(Y(I))
TL(1+3)=-TL(I)
WRITE(*,*) "I,TL(I)",1,TL(I)
95 CONTINUE
C WRITE(*,*) "END OF SECTION 4"

C
CHAHHAEND SECTION AXAARRERAARURRAREREARY

C

CHHHHSECTION S###4#4¥SECTION SAA##F#AAFRASECTION S####dR##
CeEEERTHIS SECTION FINDS THE DISPLACEMENT VECTOR TERMS

C

Co%%%%AL(1,J)-DISPLACEMENT VECTORS (I)=WHICH SOLUTION OR PARTIAL WAVE
C(J)=THE INDICE THAT INDICATES THE DIRECTION OF THE VECTOR

C

CMD=CMPLX{1.E8,0.)

DO 100 I=1,6
CM(1,1)=D(
CM(1,2)=C(

1,1) *%2%( (5, 5)

1,6)
CM(1,3)=TL(I)*

6,6)

(1)*

)

y**2*C(4,5)
3)+C(5,5))
J**2*C(4,4)
(c(4 5)+c<3 s))

+TL{
+TL(
(c(1
CM(2,2)=D( +TL{
CM(2,3)=TL
* % II n I
=1./CMD
*) “AL" I ll2“ AL(I 2)
-{CM(1, 3)*CM(2 2)-CM(1,2)*CM(2,3))/
*CM(Z 3)-CM(1,2)*CM(1,3})
AL{I,1)/CMD
,*) IIAL" I "1" AL(I l)
AL({1,3)=(CM(1, 2)+AL(I 1)*CM(1,2))/CM(2,3)
AL(I,3)=AL(I,3)/CMD
WRITE(*,*) "AL",I,"3",AL(I,3)
100 CONTINUE
WRITE({*,*) "END OF SECTION 5"

1
I
I

R A L Py

¢
¢
¢
CHHHHANEND SECTION SHAKAUHRRARRUNERARFNARRARRAGRARYY

o
CH##HSECTION GHH#HSECTION GH¥HHNHNSECTION GHEFAARENINIE

Appendix F. (GENE.FOR)- fortran program
254



CERRRGTHIS SECTION DEFINES THE KK(I,J) MATRIX FROM STRESS FREE BC'S
C%%%%KK (1,J) -MATRIX SET-UP BY IMPOSING THE STRESS FREE BC’S
C@EBRTHIS MATRIX MULTIPLIED BY DISPLACEMENT VECTORS AND MUST EQUAL
CGEEMUST EQUAL THE IDENTITY VECTOR
c

Do 110 I=1,6

RKB=CMPLX{0.,RK*B)*TL (I}

RNB=CMPLX(0.,-RK*B)*TL(1)*2.

WRITE(*,*) "RKB, RNB", RKB, RNB

CEP=CEXP(RKB)
CEN=CEXP(RNB)
KK(1,1)=CEP*(C(1,3)*AL(I,1)+C(3,3)*AL(I,3)*TL(I)
+4C(3,6)*AL(1,2))
- KK(2,1)=CEN*KK(1,1)
KK(3,1)=CEP*(C(4,4)*AL(I,2)*TL(I)
++C(4,5)*(AL(I,1)*TL(1)+AL(1,3)))
KK(4,1)=CEN*KK(3,1)
KK(5,1)=CEP*(C(4,5)*AL(I,2)*TL(I)
++C(5,5)*(AL(T,1)*TL(1)+AL(1,3)))
KK (6, 1)=CEN*KK(5,1)
110 CONTINUE
C WRITE(*,*) "END OF SECTION 6"
C  CKD=CMPLX{1.E-27,0.)
DO 125 I=1,6
DO 125 J=1,6
KK(1,d)=KK(T,J)/CKD
WRITE(*,*) "KK(",I,",",J,")",KK(I,J)
125 CONTINUE

[aXe]

¢
CHHH#END SECTION GH¥#AHRNRHERERERANRIAS

c
CHAHSECTION T##AR#SECTION THA###SECTION THAREESHHAHA
CERBRETHIS SECTION CALCULATES THE DETERMINANT OF KK(I,J)
Cu%%FF-1S THE VALUE FOR THE DETERMINANT OF KK(I,J)
C .
FF=0.
D0 340 J=1,6
AN=(-1.)%*(1+J)
DO 330 LP=1,6
IF(LP.EQ.J)GO TO 330
BN=(-1.)**(2+LP)
IF(LP.LT.J) BN=-BN
DO 320 Ne1,6
IF(N.EQ.J.0R.N.EQ.LP) GO TO 320
CN=(-1.)**{3+N)
TF(N.LT.J.AND.N.GT.LP) CN=-CN
IF(N.LT.LP.AND.N.GT.J) CN=-CN
D0 310 I=1,6
IF(1.EQ.J.0R.1.EQ.LP.OR.1.EQ.N) GO TO 310
DN=(-1.)**(4+1)
IF(I.LT.J.AND.I.LT.LP.AND.I.LT.N) DN=-DN
TF(1.6T.J.AND.I.GT.LP.AND.I.LT.N) DN=-DN
TF(1.GT.N.AND.1.GT.J.AND.I.LT.LP) DN=-DN
TF(1.GT.LP.AND.I.GT.N.AND.I.LT.J) DN=-DN
DO 300 Mal,6
IF(M.EQ.J.OR.M.EQ.LP.OR.M.EQ.N.OR.M.EQ.1)60 TO 300
EN=(-1.)**(5+M)
IF(M.GT.J.AND.M.LT.LP.AND.M.LT.N.AND.M.LT. I)EN=-EN
TF(M.GT.LP.AND.M,LT.J.AND.M.LT.N.AND.M.LT.I)EN=-EN
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IF(M.GT.N.AND.M.LT.J.AND.M.LT.LP.AND.M.LT.I}EN=-EN
IF(M.GT.T.AND.M.LT.J.AND.M.LT.LP AND.M.LT.N)EN=-EN
IF(M.LT.J.AND.M.GT.LP.AND.M.GT.N.AND.M.GT. ) EN=-EN
IF(M.LT.LP.AND.M.GT.J.AND.M.GT.N.AND . M.GT. I} EN=-EN
IF(M.LT.N.AND.M.GT.J.AND.M.GT.LP.AND.M.GT.I)EN=-EN
IF(M.LT.1.AND.M.GT.J.AND.M.GT.LP.AND.M.GT.N)EN=-EN
o IF{M.GT.J.AND.M.GT.LP.AND.M.LT.N.AND.M.LT.I)EN=-EN
C IF(M.GT.J.AND.M.GT.N.AND.M.LT.LP.AND.M.LT. ) EN=-EN
C IF(M.GT.J.AND.M.GT.I.AND.M.LT.LP.AND.M.LT.N)EN=-EN
c IF(M.GT.LP.AND.M.GT.N.AND.M.LT.J.AND . M.LT.I)EN=-EN
C IF(M.GT.LP.AND.M.GT.1.AND.M.LT.J.AND M.LT.N)EN=-EN
¢ IF(M.GT.N.AND.M.GT.I.AND.M.LT.J.AND.M.LT.LP)EN=-EN
DO 290 IT=1,6
IF(IT.EQ.J.OR.IT.EQ.LP.OR.IT.EQ.N.OR.IT.EQ.I.OR.IT.EQ.M) GO TO 290
¢ WRITE(*,*) "CALCULATE FF"

FF=FF+KK(1,J)*KK(2,LP)*KK(3,N)*KK(4, I)*KK(5,M)
+*KK (6, IT)*AN*BN*CN*DN*EN
C WRITE(*,*) "FF=",FF
290 CONTINUE
300 CONTINUE
310 CONTINUE
320 CONTINUE
330 CONTINUE
340 CONTINUE
o WRITE(*,*) "END OF SECTION 7"

c

CHAHHHEND OF SECTION 7H#HHHEND OF SECTION 7HEXHARAHANE

C

CHAHHASECTION 8###4#FSECTION BH####SECTION SHHFEANKIR
CO@RRTHIS SECTION CHECKS TO SEE IF FF IS CLOSE TO ZERO
C@@EOR IN OTHER WORDS, IF THE DISPERSION CONDITION IS MET

c
CKV=CABS (FF)
WRITE(*,*) "CKVa"
WRITE(*,*) CKV
IF (CKV.LT.1.E-10) GO TO 420
IF (NOMG.EQ.NOO) G0 TO 195
IF (CKV.GT.OKV) Iv=1
IF (CKV.LT.OKV) IV=-1
TIV=1V+I0V
WRITE(*,*) IV,IOV,IIV
IF (IIV.EQ.0.AND.CKV.GT.OKV) GO TO 420
195 IOV=IV
OKV=CKV
CHRAUAHHEND SECTION BR##HARBFBERARERARS
C
400 CONTINUE
420 CONTINUE
NOO=NOMG
WRITE(7,450) RK,OMG
¢ WRITE(7,450) CZ(1),CZ(2)
C  WRITE(7,450) CZ(3),CZ(4)
450 FORMAT( 2E18.6)
500 CONTINUE
STOP
END
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C*****THIS PROGRAM CALCULATES VELOCITIES AND DISPLACEMENT VECTORS
CH****FOR STRESS WAVES PROPAGING IN ANY DIRECTION IN A COMPOSITE
C#****pLATE, BY SOLVING THE CHRISTOFFEL EQUATION.
C****THE DIRECTION OF WAVE PROPAGATION IS DEFINED BY
CH**x*THE AZIMUTHAL ANGLE ON THE PLATE AND THEN AN INCLINATION ANGLE
Cxxx*IN THE PLANE FOR THAT AZIMUTHAL ANGLE
DIMENSION CA(6,6), VA(3), VB(3), V(3), DV(3,3)
DIMENSION C(3,3,3,3), CL(3,3), VL(3), VP(3), CN(3,3)
CHARACTER *12 DISC
DATA C/81*%0./ -
 PI=3.1450
C***xINPUT AZIMUTHAL ANGLE ROTATION FOR DEFINING ODIRECTION OF WAVE
CH#xkx+AVE PROPAGATION :
WRITE(*,*) "INPUT AZIMUTHAL ANGLE? "
READ(*,*) AZ
C*#*x**INPUT ROTATION ANGLE FOR ROTATION IN THE PLANE DEFINED
CHxeke+BY THE AZIMUTHAL ANGLE (THIS DEFINES ULTIMATE WAVE PROPAGATION
CH**xx*DIRECTION)
WRITE(*,*) "INPUT INCLINATION ANGLE? "
READ(*,*) TH
AZ=AZ*P1/180.
TH=TH*P1/180.
Cr****VA(1) DEFINES THE ORIGNAL DIRECTION OF WAVE PROPAGATION
C**%** N THE X-DIRECTION OR FIBER DIRECTION
VA(1)=1.
VA(2)=0.
VA(3)=0.
C**#**THIS SECTION CALCULATES THE ROTATION MATRIX TO ROTATE
CraxwxyA(1) AT ANY ORIENTATION DESIRED RELATIVE TO THE FIBER
C*+***DIRECTION
CA(1,1)=COS(AZ)
CA(1,2)=COS(PI/2.-AL)
CA(1,3)=0.
CA(2,1)=-SIN(AZ)
CA(2,2)=COS(AZ)
CA(2,3)=0.
CA(3,1)=0.
CA(3,2)=0.
CA(3,3)=1.
C****THIS SECTION ROTATES THE VA(I) MATRIX TO NEW AZIMUTHAL ANGLE
C****AND RENAMES MATRIX VB(I) THE DIRECTION OF PROPAGATION
00 25 I=1,3
D0 25 J=1,3
VB(I)=VA(J)*CA(I,J)
25 CONTINUE
C*+*%*THIS SECTION CALCULATES THE ROTATION MATRIX FOR INCLINING
C*****THE WAVE VECTOR VB(I) IN THE PLANE DEFINED AFTER THE
CH****ROTATION INTO THE AZIMUTHAL ANGLE
CA(1,1)=COS(TH)
CA(1,2)=0.
CA(1,3)=-SIN(TH)
CA(2,1)=0.
CA(2,2)=1.
CA(2,3)=0.
CA{3,1)=COS(P1/2.-TH)
CA(3,2)=0.
CA{3,3)=COS(TH)
C****THIS SECTION ROTATES THE VB(I) MATRIX TO NEW INCLINATION ANGLE
C***AND RENAMES MATRIX V(I) THE DIRECTION OF PROPAGATION
Crex+THIS IS THE ULTIMATE WAVE VECTOR FOR THE WAVE PROPAGATION
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DO 50 I=],3

D0 50 J=1,3

V(I)=VB(J)*CA(I,J)

25 CONTINUE

Cxx**C(I,d,K,L) IS THE STIFFNESS TENSOR FOR GR/EP AND RHO IS THE
Cr****DENSITY FOR GR/EP

RHO=.000151

C(1,1,1,1)=23.4E6

€(1,1,2,2)=.943€6

€(2,2,1,1)=.943E6

€(1,1,3,3)=C{1,1,2,2)

€(3,3,1,1)=C(1,1,2.2)

€(2,2,2,2)=2.1E6

€(2,2,3,3)=1.05E6

€(3,3,2,2)=1.05E6

€(3,3,3,3)=2.1E6

€(2,3,2,3)=.527E6/2.

€(2,3,3,2)=.527E6/2.

C(3,2,2,3)=.527€6/2.

€(3,2,3,2)=.527E6/2.

€(3,1,3,1)=1.03E6/2.

€(3,1,1,3)=1.03E6/2.

€(1,3,3,1)=1.03E6/2.

€(1,3,1,3)=1.03E6/2.

€(1,2,1,2)=1.03E6/2.

€(1,2,2,1)=1.03E6/2.

€(2,1,1,2)=1.03E6/2.

C(2,1,2,1)=1.03E6/2.
CH***THIS SECTION CARRIES OUT THE MULTIPLICATIONS FOR THE CHRISTOFFEL
C***EQUATION’S RIGHT SIDE OR THE STIFFNESS TERMS

D0 75 I=1,3

D0 75 K=1,3

DO 75 J=1,3

DO 75 L=1,3

CL{I,K)=C(I,d,K,L)*V(J)*V(L)

75 CONTINUE
8=0.
C***+THIS SECTION CALCULATES THE COEFFICIENTS FOR THE CUBIC EQUATION
C***THAT RESULTS FROM SUBTRACTING THE UNKNOWN VELOCITY IN THE
C***INERTIAL TERM FROM THE STIFFNESS TERMS
Cx**SOLVING THIS EQUATION GIVES THE VELOCITIES OF POSSIBLE
C***STRESS WAVES
DO 100 I=1,3
C****p IS THE COEFFICIENT OF THE QUADRATIC TERM
P=CL(I,1)+B
100 CONTINUE
Cx*+*Q IS THE COEFFICIENT OF THE LINEAR TERM
Q=CL(2,2)*CL(3,3)-CL{2,3)*CL(2,3)
++CL(3,3)*CL(1,1)-CL(3,1)*CL(3,1)
+CL(1, 1)*CL(2,2)-CL(1,2)*CL{1,2)
CH+**R IS THE CONSTANT TERM
R=CL(1,1)*(CL(2,2)*CL(3,3)-CL(2,3)*CL(3,2))
+-CL(1,2)*(CL(3,3)*CL(I,1)-CL(3,1)*CL(3,1))
+CL(1,3)*(CL(1,1)*CL{2,2)-CL(1,2)*CL(1.2))
C****THIS SECTION SOLVES THE CUBIC EQUATION TO FIND THE PHASE
CH+**VELOCITIES BY USING A STANDARD SOLUTION FROM THE CRC
C**+*HANDBOOK PAGE
A=3.*Q-P*p
B=(2,*P**3-9, *P*(Q+27.%R)/27.
BT=-B/2.
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AT=-(B*B/4.+A**3/27.)

IF (AT.LT.0.) AT=-AT

AT=AT** 5

KT=(BT*BT+AT*AT)**,5

TT=ATAN(BT/AT)

TA=TT/3.

KT=KT**,333333

APB=2.*KT*COS(TA)

AMB=2 . *KT*SIN(TA)
CE885536855885885585585588558855855855555558558559855885585585888
(*4xxxCAl CULATE PHASE VELOCITIES FOR WAVES

VL(1)=APB-P/3.

VL(2)=-APB-AMB*3.** 5-P/3,

VL{3)=-APB+AMB*3.** 5-P/3,

D0 125 I=1,3

VP(I)=(VL(I)/RHO)**.5

125 CONTINUE
CES5E8856855885588588558555855555585555558588558538555538538888853
Cr*xx*xCALCULATE DISPLACEMENT VECTORS

DO 175 K=1,3

DO 150 I=1,3

DO 150 J=1,3

150 CONTINUE
DV(K,3)=1.
DVN=CN(2,2)*CN(1,1)
DV(K, 1)=DV(K,3)*{CN(1,2)*CN(2,3)/DVN-CN(1,3)/CN(1,1))
+/(1-CN(1,2)*CN(2,1)/DVN)
DV(K.2)=-(CN(2,1)*DV (K, 1)+DV(K,3)*CN(2,3))/CN(2,2)
175 CONTINUE
C****WRITE PHASE VELOCITIES TO FILE
DO 225 I-1,3
WRITE(6,200) AZ, TH, VP(I)
200 FORMAT (3E18.6)
C****STOP AREA
500 STOP
END
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Appendix H. Improved approaches for programming

As mentioned, the present programs need to be upgraded before full advantage can be taken of the
physical understanding of the AU technique which has been reached. Particularly, the programs
need to be optimized, so that all modes are automatically found, without the user manipulating
code, as is presently done. The following is a partial list of ideas for improving the programming

efforts:
Up load to mainframe
Apply numerical methods, such as Newton’s method to the function F
Use mcthod of uncoupled modes to improve solution search (see discussion below)
Key solution only to arcas of intercst

The method of uncoupled modes (ref. 127) involves solving the boundary value problem for mixed
boundary conditions, which uncouples the P-wave and SV-wave. Then the dispersion curve for the

resonating uncoupled modes can be obtained. The following equations describe these modes

(Mn) = (0h|V,)? — (k)
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where M is an integer, V,, is the phase velocity for the mode of propagation (P-wave or S-wave),
in the direction associated with the angle, 8, while A is half the plate thickness, and k is the
wavenumber in the plate direction for the partial wave solution. In this scheme, the value of V,
is found by solving the plane wave Christoffel problem (appendix G). These two equations can
then be used to obtain asymptotes for the coupled wave solution, the w and & values are simply
plotted. It should be noted that these are not simple hyperbolas for anisotropic materials, because

the value of V,, varies with angle 0.

Basically, the coupled modes follow these curves, intersecting their crossings for certain conditions
and then following other curves, drastically changing directions in some cases (see figs. 70 and 72).
Perhaps advanced work geared toward understanding how modes are guided in between these

curves and their crossings could greatly improve the ability to find points on the dispersion curve.
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